NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Josephson Microwave Sources Applied to Quantum Information Systems
Published
Author(s)
Adam J. Sirois, Manuel C. Castellanos Beltran, Anna E. Fox, Samuel P. Benz, Peter F. Hopkins
Abstract
Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant challenges with power dissipation, reproducibility, fidelity, and scalability. In this article, we experimentally demonstrate the use of a Josephson arbitrary waveform synthesizer (JAWS) to generate control signals at 4 K and perform spectroscopy of two components of a typical superconducting quantum information system: a linear resonator and a (nonlinear) transmon qubit. By locating the JAWS chip at 4 K and a qubit at 0.1 K, the direct path for quasi-particle poisoning from the JAWS chip to the qubit is broken. We demonstrate the stable, self-calibrated, and reproducible output signal of the JAWS when operated in its quantum locking range, a feature that allows these synthesizers to be replicated and scaled in the cryostat, all with identical on-chip, quantized, outputs. This is a proof-of-concept demonstration to generate signals at 4 K using driven superconducting electronics to control qubits at lower temperatures.
Sirois, A.
, Castellanos, M.
, Fox, A.
, Benz, S.
and Hopkins, P.
(2020),
Josephson Microwave Sources Applied to Quantum Information Systems, IEEE Transactions on Quantum Engineering, [online], https://doi.org/10.1109/TQE.2020.3045682
(Accessed October 11, 2025)