Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 301 - 325 of 930

Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits

August 30, 2019
Author(s)
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
Silicon photonics enables the integration of multi-functional quantum networks on a chip. Inclusion of quantum emitters acting as on-demand single-photon source or photon non-linearity is highly desirable to boost scalability and functionality. Towards

A compact, UHV ion source for enriching 28Si and depositing epitaxial thin films

August 22, 2019
Author(s)
Ke Tang, Hyun S. Kim, Aruna N. Ramanayaka, David S. Simons, Joshua M. Pomeroy
An ultra-high-vacuum (UHV) compatible Penning ion source for growing pure, highly enriched 28Si epitaxial thin films is presented. Enriched 28Si is a critical material for quantum information due to the elimination of nuclear spins and, in some cases, must

Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion

August 22, 2019
Author(s)
Oliver T. Slattery, Lijun Ma, Kevin Zong, Xiao Tang
Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal has been a workhorse for the generation of entangled and correlated single-photon pairs used for quantum communications applications for nearly three decades. However, as a naturally

Quantum interference enables constant-time quantum information processing

July 19, 2019
Author(s)
Thomas Gerrits, Sae Woo Nam, Adriana E. Lita, M. Stobinska, A. Buraczewski, M. Moore, W.R. Clements, J.J. Renema, W.S. Kolthammer, A. Eckstein, I.A. Walmsley
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the

Active protection of a superconducting qubit with an interferometric Josephson isolator

July 17, 2019
Author(s)
Baleegh Abdo, Nicholas T. Bronn, Oblesh Jinka, Salvatore B. Olivadese, Antonio D. Corcoles, Vivekananda P. Adiga, Markus Brink, Russell Lake, Xian Wu, David P. Pappas, Jerry M. Chow
Nonreciprocal microwave devices play critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They impose unidirectional routing of readout signals and protect the quantum systems from unwanted noise originated by the output chain

Quantum gate teleportation between separated zones of a trapped-ion processor

May 31, 2019
Author(s)
Yong Wan, Daniel Kienzler, Stephen D. Erickson, Karl H. Mayer, Ting R. Tan, Jenny J. Wu, Hilma H. Macedo De Vasconcelos, Scott C. Glancy, Emanuel H. Knill, David J. Wineland, Andrew C. Wilson, Dietrich G. Leibfried
Large-scale quantum computers will inevitably require quantum gate operations between widely separated qubits, even within a single quantum information processing device. Nearly two decades ago, Gottesman and Chuang proposed a method for implementing such

Graphical Methods in Device-Independent Quantum Cryptography

May 27, 2019
Author(s)
Spencer J. Breiner, Carl A. Miller, Neil J. Ross
We introduce a framework for providing graphical security proofs for quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

May 20, 2019
Author(s)
Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has

Electromagnetically induced transparency in inhomogeneously broadened solid media

May 15, 2019
Author(s)
Kumel H. Kagalwala, Fan Haoquan, Sergey Polyakov, Alan L. Migdall, Elizabeth A. Goldschmidt
We study, theoretically and experimentally, electromagnetically induced transparency (EIT) in two di erent solid-state systems. Unlike many implementations in homogeneously broadened media, these systems exhibit inhomogeneous broadening of their optical

A Testbed for Quantum Communication and Quantum Networks

May 13, 2019
Author(s)
Lijun Ma, Abdella Battou, Xiao Tang, Oliver T. Slattery
The development of Quantum Networks is underway with significant acceleration in in recent years. Meanwhile. quantum scale devices and components such as single photon sources, detectors, memories and interfaces are ever readier to leave the laboratory

Design and performance study of actively holding-off GHz-gated InGaAs/InP SPADs

May 13, 2019
Author(s)
Alessandro Restelli, Joshua C. Bienfang, Alan L. Migdall
High-speed periodic gating of InGaAs/InP single-photon avalanche diodes (SPADs) has allowed these detectors to operate at count rates above $10^8$ per second with low-afterpulsing. However, a drawback of high-speed periodic gating is that bias gates are

Generating polarization-entangled photon pairs in domain-engineered PPLN

May 7, 2019
Author(s)
Paulina S. Kuo, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
Using a periodically poled LiNbO3 crystal that is domain-engineered for two simultaneous type-II down-conversion processes, we demonstrated polarization-entangled photon-pair generation.

Integrated transition edge sensors on lithium niobate waveguides

May 7, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Richard Mirin, Sae Woo Nam, Jan P. Hoepker, Stephan Krapick, Harald Herrmann, Raimund Ricken, Victor Quiring, Christine Silberhorn, Tim J. Bartley
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a lithium niobate waveguide to a superconducting transition edge sensor. The coupling efficiency strongly depends on the polarization, the overlap between the evanescent

A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability

April 22, 2019
Author(s)
Jin Liu, Rongbin Su, Yuming Wei, Beimeng Yao, Saimon Filipe Covre da Silva, Ying Yu, Jake Iles-Smith, Kartik Srinivasan, Armando Rastelli, Juntao Li, Xuehua Wang
The generation of high-quality entangled photon pairs has been being a long-sought goal in modern quan-tum communication and computation. To date, the most widely-used entangled photon pairs are gener-ated from spontaneous parametric downconversion, a

Indistinguishable single-mode photons from spectrally engineered biphotons

April 15, 2019
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Changchen Chen, Jane Heyes, Kyung-Han Hong, Jeffrey Shapiro, Franco N. Wong
We use pulsed spontaneous parametric down-conversion in KTiOPO4, with a Gaussian phasematching function and a transform-limited Gaussian pump, to achieve near-unity spectral purity in heralded single photons at telecommunication wavelength. Theory shows

Broadband Lamb shift in an engineered quantum system

March 11, 2019
Author(s)
Matti Silveri, S Masuda, Vasilii Sevriuk, K-Y Tan, Mate Jenei, Eric Hyyppa, Fabian Hassler, Matti Partanen, Jan Goetz, Russell Lake, Leif Gronberg, Mikko Mottonen
The shift of the energy levels of a quantum system owing to broadband electromagnetic vacuum fluctuations-the Lamb shift-has been central for the development of quantum electrodynamics and for the understanding of atomic spectra. Identifying the origin of

Evidence for moire excitons in van der Waals heterostructures

February 25, 2019
Author(s)
Kha Tran, Galan Moody, Travis M. Autry, Kevin L. Silverman, Fengcheng Wu, Junho Choi, Akshay Singh, Jacob Embley, Andre Zepeda, Marshall Cambel, Kyoung Kim, Amritesh Rai, Daniel Sanchez, Takashi Taniguchi, Kenji Watanabe, Li Yang, Nanshu Lu, Sanjay Banerjee, emanuel tutuc, Allan H. MacDonald, Xiaoqin Li
Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit. In van der Waals heterostructures formed by stacking two

Switchable detector array scheme to reduce the effect of single-photon detector's deadtime in a multi-bit/photon quantum link

February 25, 2019
Author(s)
Cong Liu, YONGXIONG Ren, Jiapeng Zhao, MOHAMMAD MIRHOSSEINI, SEYED RAFSANJANI, GUODONG XIE, Kai Pang, Zhe Zhao, Long Li, Joshua Bienfang, Alan L. Migdall, Todd Brun, Moshe Tur, Robert Boyd, Alan Wilner
We explore the use of a switchable single-photon detector (SPD) array to reduce the effect of individual SPDs' deadtime for a multi-bit/photon quantum link such as M-orbital-angular-momentum (OAM)-encoded one. Our method uses 􀡺 SPDs with a controllable 􀡹 ×

Stacked Josephson Junctions as inductors for SFQ circuits

February 11, 2019
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Paul D. Dresselhaus, Samuel P. Benz, Peter F. Hopkins
In order for Single Flux Quantum (SFQ) circuits to be scaled to densities needed for large-scale integration, typical lithographically-patterned circuit components should be made to be as compact as possible. In this work, we characterize the performance
Was this page helpful?