Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Design and performance study of actively holding-off GHz-gated InGaAs/InP SPADs



Alessandro Restelli, Joshua C. Bienfang, Alan L. Migdall


High-speed periodic gating of InGaAs/InP single-photon avalanche diodes (SPADs) has allowed these detectors to operate at count rates above $10^8$ per second with low-afterpulsing. However, a drawback of high-speed periodic gating is that bias gates are applied continuously, regardless of whether an avalanche has occurred or not. This is disadvantageous because gates immediately following an avalanche have elevated afterpulse probabilities. The additional charge from these secondary events contributes to the overall afterpulse probability. We investigate this phenomenon in a proof-of-principle experiment in which the series of bias gates is briefly interrupted after an avalanche, and we measure the resulting impact on the afterpulse probability. We observe a significant reduction in afterpulsing when such a bias- gate hold-off is applied to an InGaAs/InP SPAD gated at 1.25 GHz; when one bias gate is omitted after and avalanche the per-gate afterpulse probability is reduced by more than $40~\%$. These results indicate that afterpulsing noise at high count rates can be further reduced in high- speed-gated SPADs.
Proceedings Title
Advanced Photon Counting Techniques XIII; Proc. SPIE Vol. 10978
Conference Dates
April 17-18, 2019
Conference Location
Baltimore, MD
Conference Title
Advanced Photon Counting Techniques XIII


Single-photon detector, single-photon avalanche diode, quantum communication, photon detection, afterpulsing
Created May 13, 2019, Updated December 13, 2019