NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Ann C. Chiaramonti Debay, Laurence D. Marks , Shams Rahman, Martin Castell
There is growing interest in oxide surfaces due to their role in areas ranging from the growth of oxides for low power electronics to heterogeneous catalysis. However, there are still many uncertainties about their atomic structure although substantial
Tamar Segal-Peretz, Jonathan P. Winterstein, Manolis Doxastakis, Abelardo Ramirez-Hernandez, Mahua Biswas, Jiaxing Ren, Hyo S. Suh, Seth B. Darling, James Alexander Liddle, Jeffrey Elam, Juan J. de Pablo, Nestor Zaluzec, Paul Nealey
Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications
Yue Y. Zhao, Jonathan E. Wyrick, Donat F. Natterer, Joaquin R. Nieva, Cyprian Lewandowski, Kenji Watanabe, Takashi Taniguchi, Leonid Levitov, Nikolai B. Zhitenev, Joseph A. Stroscio
Designing high-finesse resonant cavities for electronic waves is hampered by the short coherence lengths in solids. Previous approaches, e.g. the seminal nanometer-sized quantum corrals, depend on careful positioning of adatoms at clean surfaces. Here we
Gheorghe Stan, Cristian V. Ciobanu, Igor Levin, Mark van Veenhuizen, Alan Myers, Kanwal Singh, Christopher Jezewski, Barbara Miner, Sean King
Commonly known in macroscale mechanics, buckling phenomena are now frequently also encountered in the nanoscale world as reveled in today's cutting-edge fabrication of microelectronics. The description of nanoscale buckling requires precise dimensional and
Ronald G. Dixson, Boon Ping Ng, Xavier Bonnaud, Ndubuisi G. Orji
A major challenge in critical dimension atomic force microscope (CD-AFM) width metrology is accounting for the effects of the tip on the apparent features in an image. The overall effect of the tip is to broaden the apparent width of lines and narrow the
Spin-torque memory is under consideration for high-speed, scalable, non-volatile memory applications. The storage medium is a magnetic layer with an intrinsic anisotropy that favors orientation of the magnetization in either of two directions perpendicular
William J. Bowman, Jiangtao Zhu, Renu Sharma, Peter A. Crozier
We characterize electrical conductivity, microstructure, nano-scale grain boundary structure and chemistry of ceria electrolytes with nominal compositions of Gd0.2Ce0.8O2-δ (GDC) and Gd0.11Pr0.04Ce0.85O2-δ (GPDC). The electrolytes are fabricated using
Chelsea S. Davis, Jeremiah W. Woodcock, Jeffrey W. Gilman
Carbon nanotubes (CNT) are a widely studied nanomaterial due to their unique electrical, thermal, and mechanical properties which can be transferred to commercially-relevant products. As a result, several industries have made significant efforts to
David G. Goodwin , Kris M. Marsh, Iruhany B. Sosa, Julianne B. Payne, Justin Gorham, Edward J. Bouwer, D H. Fairbrother
The environmental fate and impact of polymer nanocomposites (PNCs) containing carbon nanotubes (CNTs) will depend upon their interactions with microorganisms, with implications for the antimicrobial properties and long term persistence of PNCs. Using
Mark Alexander Henn, Richard M. Silver, Nien F. Zhang, Hui Zhou, Bryan M. Barnes, Bin Ming, Andras Vladar, John S. Villarrubia
Hybrid metrology, e.g. the combination of several measurement techniques to determine critical dimensions, is an important approach to meet the needs of semiconductor industry. A proper use of hybrid metrology may not only yield more reliable estimates for
Aaron M. Katzenmeyer, Glenn Holland, Kevin Kjoller, Andrea Centrone
Absorption spectroscopy and mapping from visible through mid-IR wavelengths has been achieved with spatial resolution exceeding the limit imposed by diffraction, via the photothermal induced resonance technique. Correlated vibrational (chemical), and
Robert R. Keller, Katherine P. Rice, Mark Stoykovich
Transmission electron backscatter diffraction (t-EBSD), also known as transmission electron forward scatter diffraction (t-EFSD) or transmission Kikuchi diffraction in the SEM (TKD-SEM), can provide significant improvements in spatial resolution over
Justin M. Gorham, Jeremiah W. Woodcock, Keana C. Scott
FOREWORD This NIST Special Publication (SP) is one in a series of NIST SPs that address research needs articulated in the National Nanotechnology Initiative (NNI) Environmental, Health, and Safety Research Strategy published in 2011 [1]. This Strategy
Riu Dong, Yanjun Fang, Jungseok Chae, Jun Dai, Zhengguo Xiao, Qingfeng Dong, Yongbo Yuan, Andrea Centrone, Xiaocheng Zeng, Jinsong Huang
Methylammonium lead triiodide (CH3NH3PbI3) perovskite is an emerging low-cost, solution processable material which attracts great interest for enabling the fabrication of high performance optoelectronic devices such as solar cells, room temperature lasers
Deborah S. Jacobs, Yu L. Cheng, Savelas A. Rabb, Peter J. Krommenhoek, Lee L. Yu, Tinh Nguyen, Li Piin Sung
Considerable research has shown that many coatings properties such as mechanical, electrical, and ultra violet (UV) resistance are greatly enhanced by the addition of nanoparticles, which can potentially increase the use of nanocoatings for many outdoor
Sujitra J. Pookpanratana, Leigh Lydecker, Curt A. Richter, Christina A. Hacker
The formation of molecular monolayers on template-stripped cobalt surfaces is reported. The quality of the alkane-based molecular structure was confirmed through spectroscopic measurements. We find that the self-assembly of bifunctional molecules has
Matthieu C. Picher, Stefano Mazzuccoo, Steven R. Blankenship, Renu Sharma
Here, we present a measurement platform for collecting optical spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by the insertion of a
The ability to pattern the location of pillars in epitaxial matrix-pillar nanocomposites is a key challenge to develop future technologies using these intriguing materials. One such model system employs a ferrimagnetic CoFe2O4 (CFO) pillar embedded in a
Vladimir Aksyuk, Basudev Lahiri, Glenn Holland, Andrea Centrone
Surface-enhanced infrared absorption (SEIRA) spectroscopy exploits the locally enhanced field surrounding plasmonic metamaterials to increase the sensitivity of infrared spectroscopy. Light polarization and incident angle are important factors for exciting
Bryan M. Barnes, Francois R. Goasmat, Martin Y. Sohn, Hui Zhou, Andras Vladar, Richard M. Silver
Patterning imperfections in semiconductor device fabrication may either be noncritical [e.g., line edge roughness (LER)] or critical, such as defects that impact manufacturing yield. As the sizes of the pitches and linewidths decrease in lithography
Firearm serial numbers are a critical identifying mark, and restoration of destroyed serial numbers is often crucial for prosecution of a criminal case. Currently available methods, including acid etching and relief polishing, present serious limitations
Evgheni Strelcov, Joshua Cothren, Donovan Leonard, Albina Y. Borisevich, Andrei Kolmakov
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in transmission electron