NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Nathan E. Flowers-Jacobs, Alain Rufenacht, Anna E. Fox, Steven B. Waltman, Robert E. Schwall, Justus A. Brevik, Paul D. Dresselhaus, Samuel P. Benz
We have recently created a 4 V rms cryocooled JAWS (Josephson Arbitrary Waveform Synthesizer) using 204,960 nearly identical Josephson junctions (JJs) that are embedded in coplanar-wave guides. The JJs are pulse-biased at repetition rates up to 16 × 10 9
Alirio De Jesus Soares Boaventura, Dylan F. Williams, Richard A. Chamberlin, Jerome G. Cheron, Anna E. Fox, Paul D. Dresselhaus, Peter F. Hopkins, Ian W. Haygood, Samuel P. Benz
We developed a cryogenic multiline thru-reflect-line (TRL) calibration kit for microwave characterizing of superconductive circuits used in the Josephson arbitrary waveform synthesizer of the national institute of standards and technology (NIST). We also
Michael L. Schneider, Christine A. Donnelly, Ian W. Haygood, Alex Wynn, Stephen E. Russek, Manuel C. Castellanos Beltran, Paul D. Dresselhaus, Peter F. Hopkins, Matthew R. Pufall, William H. Rippard
Josephson junctions act as a natural spiking neuron-like device for neuromorphic computing. By leveraging the advances recently demonstrated in digital single flux quantum (SFQ) circuits and using recently demonstrated magnetic Josephson junction (MJJ)
Much of the information processing performed by a neuron occurs in the dendritic tree. For neural systems using light for communication, it is advantageous to convert signals to the electronic domain at synaptic terminals so dendritic computation can be
Varun Verma, Adriana Lita, Sae Woo Nam, R P. Mirin, Emma Wollman, William Farr, Matthew Shaw
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.
John A. Mates, Daniel T. Becker, Douglas A. Bennett, Bradley J. Dober, Johnathon D. Gard, Gene C. Hilton, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom
Low-temperature detector technologies provide extraordinary sensitivity for applications ranging from precision measurements of the cosmic microwave background to high-resolution, high-rate x-ray, and c-ray spectroscopy. To utilize this sensitivity, new
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, Johnathon D. Gard, Jozsef Imrek, John A. Mates, Christine G. Pappas, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Joel C. Weber, Abigail L. Wessels, Daniel S. Swetz
Microwave SQUID multiplexing has become a key technology for reading out large arrays of X-ray and gamma-ray microcalorimeters with mux factors of 100 or more. The desire for fast X-ray pulses that accommodate photon counting rates of hundreds or thousands
Matti Partanen, Jan Goetz, K-Y Tan, Kassius Kohvakka, Vasilii Sevriuk, Russell Lake, Roope J. Kokkoniemi, Joni Ikonen, Dibyendu Hazra, Akseli Makinen, Eric Hyyppa, Leif Gronberg, Visa Vesterinen, Matti Silveri, Mikko Mottonen
Superconducting quantum circuits are potential candidates to realize a large-scale quantum computer. The envisioned large density of integrated components, however, requires a proper thermal management and control of dissipation. To this end, it is
The Josephson effect has revolutionized voltage metrology [1-5] and, together with the quantum Hall effect for resistance and atomic clocks for time and frequency, has enabled measurement standards based on quantum effects. Quantum standards produce
Christine A. Donnelly, Justus A. Brevik, Nathan E. Flowers-Jacobs, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz
For the first time, we synthesize single- and multiple-tone waveforms at gigahertz frequencies from arrays of Josephson junctions and demonstrate quantum-locked operation over a range of experimental input parameters. We first use a lumped-element circuit
Christine A. Donnelly, Nathan E. Flowers-Jacobs, Justus A. Brevik, Anna E. Fox, Paul D. Dresselhaus, Peter F. Hopkins, Samuel P. Benz
We synthesize single- and multiple-tone waveforms at gigahertz frequencies from arrays of Josephson junctions and demonstrate their quantum-locked operation over a range of experimental input parameters. We first use a lumped-element circuit to synthesize
Adam C. Weis, Nathan E. Flowers-Jacobs, E Y. Choi, H Li, J C. LeFebvre, Shane Cybart, Stuart Berkowitz, Horst Rogalla, Samuel P. Benz
Josephson junction arrays are the basis for quantum-accurate dc and ac voltage standards, including artificial voltage-noise references used in noise thermometry. I will describe our recent progress towards voltage synthesis using high-transition
Adam N. McCaughan, Varun B. Verma, Sonia M. Buckley, Alexander N. Tait, Sae Woo Nam, Jeffrey M. Shainline
A number of current approaches to quantum and neuromorphic computing use superconductors as the basis of their platform or as a measurement component, and will need to operate at cryogenic temperatures. Semiconductor systems are typically proposed as a top
Christine A. Donnelly, Justus Brevik, Nathan Flowers-Jacobs, Anna Fox, Paul Dresselhaus, Peter F. Hopkins, Samuel Benz
We present time-domain electrical measurements and simulations of the quantized voltage pulses that are generated from series-connected Josephson junction (JJ) arrays. The transmission delay of the JJ array can lead to a broadening of the net output pulse
Joel C. Weber, Joseph W. Fowler, Malcolm S. Durkin, Kelsey M. Morgan, John A. Mates, Douglas A. Bennett, William B. Doriese, Daniel R. Schmidt, Gene C. Hilton, Daniel S. Swetz, Joel N. Ullom
The development of a superconducting analog to the transistor with extremely low power dissipation will accelerate the proliferation of low-temperature circuitry operating in the milliKelvin regime. The thin-film, magnetically actuated cryotron switch is a
Douglas A. Bennett, John A. Mates, Simon R. Bandler, Daniel T. Becker, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, K D. Irwin, Kelsey M. Morgan, Carl D. Reintsema, Kazuhiro Sakai, Daniel R. Schmidt, Stephen J. Smith, Daniel S. Swetz, Joel N. Ullom, Leila R. Vale, Abigail L. Wessels
The Lynx x-ray microcalorimeter (LXM) is an imaging spectrometer for the Lynx satellite mission, an x-ray telescope being considered by NASA to be a new flagship mission. Lynx will enable unique astrophysical observations into the x-ray universe due to its
Malcolm S. Durkin, Joseph S. Adams, Simon R. Bandler, James A. Chervenak, Saptarshi Chaudhuri, Carl S. Dawson, Edward V. Denison, William B. Doriese, Shannon M. Duff, F. M. Finkbeiner, C. T. FitzGerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young I. Joe, R. L. Kelley, Caroline A. Kilbourne, A. R. Miniussi, Kelsey M. Morgan, Galen C. O'Neil, Christine G. Pappas, F. S. Porter, Carl D. Reintsema, David A. Rudman, Kazuhiro Sakai, Stephen J. Smith, Robert W. Stevens, Daniel S. Swetz, Paul Szypryt, Joel N. Ullom, Leila R. Vale, N. Wakeham, Joel C. Weber, B. A. Young
Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for european space agency's Athena satellite mission
William B. Doriese, Simon R. Bandler, Saptarshi Chaudhuri, Carl S. Dawson, Edward V. Denison, Shannon M. Duff, Malcolm S. Durkin, C. T. FitzGerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young I. Joe, Kelsey M. Morgan, Galen C. O'Neil, Christine G. Pappas, Carl D. Reintsema, David A. Rudman, Stephen J. Smith, Robert W. Stevens, Daniel S. Swetz, Paul Szypryt, Joel N. Ullom, Leila R. Vale, Joel C. Weber, B. A. Young
Readout of a large, spacecraft-based array of superconducting transition-edge sensors (TESs) requires careful management of the layout area and power dissipation of the cryogenic-circuit components. We present three optimizations of our time- (TDM) and
Carl D. Reintsema, Douglas A. Bennett, Edward V. Denison, Malcolm S. Durkin, William B. Doriese, Joseph W. Fowler, Johnathon D. Gard, Arpi L. Grigorian, Gene C. Hilton, Johannes Hubmayr, Galen C. O'Neil, John A. Mates, Kelsey M. Morgan, Daniel R. Schmidt, Robert W. Stevens, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom, Kent D. Irwin, Saptarshi Chaudhuri, Charles J. Titus, Carl S. Dawson
The successful realization and broad deployment of transition edge sensor (TES)-based detector systems has led to significant demand for time-division and code-division superconducting quantum interference device (SQUID) multiplexers time division
Anna E. Fox, Grace E. Butler, Miranda L. Thompson, Paul D. Dresselhaus, Samuel P. Benz
A study has been performed to understand the effects of magnetic field induced current in Josephson voltage standard circuits. Inductive filtering is an essential component in Josephson voltage standard devices for isolation of the microwave and DC bias
Adam N. McCaughan, Emily Toomey, Murat Onen, Brenden Butters, Karl Berggren
The basis for superconducting electronics can broadly be divided between two technologies: the Josephson junction and the superconducting nanowire. While the Josephson junction (JJ) remains the dominant technology due to its high speed and low power
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, William B. Doriese, Johnathon D. Gard, K D. Irwin, Sang-Jun Lee, Dale Li, John A. Mates, Christine G. Pappas, Daniel R. Schmidt, Charles Titus, Daniel Van Winkle, Joel N. Ullom, Abigail L. Wessels, Daniel S. Swetz
We are designing an array of transition-edge sensor (TES) microcalorimeters for a soft X-ray spectrometer at the Linac Coherent Light Source at SLAC National Accelerator Laboratory to coincide with upgrades to the free electron laser facility. The complete
Jungjoon Ahn, Santiago D. Solares, Lin You, Hanaul Noh, Joseph Kopanski, Yaw S. Obeng
In this paper, we demonstrate AFM probe assisted deterministic doping (PADD) of Al into an n- type Si (100) wafer, to generate nanoscale counter-doped junctions with a few nanometers depth from Si surface. The local electrical potential changes resulting
David I. Olaya, Manuel C. Castellanos Beltran, Javier Pulecio, John P. Biesecker, Soroush Khadem, Theodore Lewitt, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz
We describe the single-flux-quantum (SFQ) circuit fabrication process employed at NIST's Boulder Microfabrication Facility. The process includes four superconducting metal layers, one palladium-gold resistor layer, and a contact pad layer. Chemical