Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David Carlson (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 58

Nanophotonic oscillators for laser conversion beyond an octave

February 11, 2025
Author(s)
Grant Brodnik, Haixin Liu, David Carlson, Jennifer Black, Scott Papp
Many uses of lasers place the highest importance on access to specific wavelength bands. For example, mobilizing optical-atomic clocks for a leap in sensing requires compact lasers at frequencies spread across the visible and near infrared. Integrated

The bandgap-detuned excitation regime in photonic-crystal resonators

February 11, 2025
Author(s)
Yan Jin, Erwan Lucas, Jizhao Zang, Travis Briles, Ivan Dickson, David Carlson, Scott Papp
Control of nonlinear interactions in microresonators enhances access to classical and quantum field states across nearly limitless bandwidth. A recent innovation has been to leverage coherent scattering of the intraresonator pump as a control of group

Heterogeneously integrated AlGaAs/GaAs photodiodes on tantala waveguides

December 1, 2024
Author(s)
Masoud Jafari, Tasneem Fatema, David Carlson, Scott Papp, Andreas Beling
We demonstrate the first heterogeneously integrated high-speed waveguide photodiode (PD) on tantalum pentoxide (Ta2O5, or tantala) for visible light detection. The PDs have 100 pA dark current, more than 56% quantum efficiency (QE) between 635 nm and 780

Laser-power consumption of soliton formation in a bidirectional Kerr resonator

March 5, 2024
Author(s)
Jizhao Zang, Su-Peng Yu, Haixin Liu, Yan Jin, Travis Briles, David Carlson, Scott Papp
Laser sources power extreme data transmission as well as computing acceleration, access to ultrahigh-speed signaling, and sensing for chemicals, distance, and pattern recognition. The ever-growing scale of these applications drives innovation in multi

Photonic bandgap microcombs at 1064 nm

February 27, 2024
Author(s)
Gregory Spektor, Jizhao Zang, Atasi Dan, Travis Briles, Grant Brodnik, Haixin Liu, Jennifer Black, David Carlson, Scott Papp
Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands

Optical frequency division & pulse synchronization using a photonic-crystal microcomb injected chip-scale mode-locked laser

February 15, 2024
Author(s)
Chinmay Shirpurkar, Jizhao Zang, Ricardo Bustos-Ramirez, David Carlson, Travis Briles, Lawrence R. Trask, Srinivas V. Pericherla, Di Huang, Ashish Bhardwaj, Gloria E. Hoefler, Scott Papp, Peter J. Delfyett
A mode-locked laser photonic integrated circuit with a repetition rate of 10 GHz is optically synchronized to a tantalabased photonic crystal resonator comb with a repetition rate of 200 GHz. The synchronization is achieved through regenerative harmonic

Threshold and Laser Conversion in Nanostructured-Resonator Parametric Oscillators

January 10, 2024
Author(s)
Haixin Liu, Grant Brodnik, Jizhao Zang, David Carlson, Jennifer Black, Scott Papp
We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter

Tailoring microcombs with inverse-designed, meta-dispersion microresonators

July 17, 2023
Author(s)
Erwan Lucas, Su-Peng Yu, Travis Briles, David Carlson, Scott Papp
Nonlinear wave mixing in optical microresonators ofers new perspectives to generate compact optical-frequency microcombs, which enable an ever-growing number of applications. Microcombs exhibit a spectral profle that is primarily determined by their

Universal visible emitters in nanoscale integrated photonics

June 30, 2023
Author(s)
Gregory Spektor, David Carlson, Zachary Newman, Jinhie Lee Skarda, Neil Sapra, Logan Su, Sindhu Jammi, Andrew Ferdinand, Amit Agrawal, Jelena Vuckovic, Scott Papp
Visible wavelength lasers control quantum matter of atoms and molecules, enable frontiers of physical sensing, and are foundational for various applications. The development of visible integrated photonics opens the possibility for scalable circuits with

Nonlinear Networks for Arbitrary Optical Synthesis

May 19, 2023
Author(s)
Jennifer Black, Zachary Newman, Su-Peng Yu, David Carlson, Scott Papp
Nonlinear wavelength conversion is a powerful control of light, especially when implemented at the nanoscale with integrated photonics. However, strict energy conservation and phase-matching requirements constrain the converted output. To overcome these

Optical-parametric oscillation in photonic-crystal ring resonators

October 20, 2022
Author(s)
Jennifer Black, Grant Brodnik, Haixin Liu, Su-Peng Yu, David Carlson, Jizhao Zang, Travis Briles, Scott Papp
By-design access to laser wavelength, especially with integrated photonics, is critical to advance quantum sensors, such as optical clocks and quantum-information systems, and open opportunities in optical communication. Semiconductor-laser gain provides

Photonic crystal resonators for inverse-designed multi-dimensional optical interconnects

June 9, 2022
Author(s)
Jizhao Zang, C. SHIRPURKAR, K.Y. YANG, David Carlson, Su-peng Yu, Erwan Lucas, S.V. PERICHERLA, J. Yang, M. GUIDRY, D. LUKIN, L. TRASK, F. AFLATOUNI, J. VUVC KOVI'C, Scott Papp, P.J. DELFYETT
We experimentally demonstrate a 40-channel 400 Gbps optical communication link utilizing wavelength division multiplexing and mode-division multiplexing. This link utilizes a novel 400 GHz photonic crystal resonator as a chip-scale frequency comb source

Tantala Kerr nonlinear integrated photonics

May 26, 2021
Author(s)
Hojoong Jung, Su P. Yu, David Carlson, Tara E. Drake, Travis Briles, Scott Papp
Integrated photonics plays a central role in modern science and technology, enabling experiments from nonlinear science to quantum information, ultraprecise measurements and sensing, and advanced applications like data communication and signal processing

Group-velocity dispersion engineering of tantalum pentoxide integrated photonics

February 9, 2021
Author(s)
Jennifer Black, Richelle H. Streater, Kieran F. LaMee, David Carlson, Su P. Yu, Scott Papp
Designing integrated photonics, especially to leverage Kerr-nonlinear optics, requires accurate and precise knowledge of refractive index across the visible to infrared spectral ranges. Tantalum pentoxide (Ta2O5, tantala) is an emerging material platform

Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm

July 22, 2020
Author(s)
Kieran F. LaMee, David Carlson, Zachary Newman, Su P. Yu, Scott Papp
We experimentally demonstrate efficient and broadband supercontinuum generation in nonlinear tantala (Ta2O5) waveguides using a 1560 nm femtosecond seed laser. With incident pulse energies as low as 100 pJ, we create spectra spanning up to 1.6 octaves

Mid-infrared frequency combs at 10 GHz

June 29, 2020
Author(s)
Abijith S. Kowligy, David Carlson, Daniel D. Hickstein, Henry R. Timmers, Alexander Lind, Scott Papp, Scott Diddams
We demonstrate 10 GHz mid-infrared frequency combs spanning 3-5 μm and 7-11 μm that are generated with few-cycle electro-optic pulses and intrapulse difference-frequency generation.

Ultranarrow linewidth photonic-atomic laser

January 8, 2020
Author(s)
Wei Zhang, Liron Stern, David R. Carlson, Douglas G. Bopp, Zachary L. Newman, Songbai Kang, John Kitching, Scott Papp
Lasers with high spectral purity can enable a diverse application space, including precision spectroscopy, coherent high-speed communications, physical sensing, and manipulation of quantum systems. Already, meticulous design and construction of bench Fabry