NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Broadband, electro-optic, dual-comb spectrometer for linear and nonlinear measurements
Published
Author(s)
David Carlson, Daniel D. Hickstein, Scott Papp
Abstract
We demonstrate a dual-comb spectrometer based on electro-optic modulation of a continuous-wave laser at 10 GHz. The system simultaneously offers fast acquisition speed and ultrabroad spectral coverage, spanning 120 THz across the near infrared. Our spectrometer is highly adaptable, and we demonstrate absorption spectroscopy of atmospheric gases and a dual-comb configuration that captures nonlinear Raman spectra of semiconductor materials via coherent anti-Stokes Raman scattering. The ability to rapidly and simultaneously acquire broadband spectra with high frequency resolution and high sensitivity points to new possibilities for hyperspectral sensing in fields such as remote sensing, biological detection and imaging, and machine vision.
Carlson, D.
, Hickstein, D.
and Papp, S.
(2020),
Broadband, electro-optic, dual-comb spectrometer for linear and nonlinear measurements, Optics Express, [online], https://doi.org/10.1364/OE.400433
(Accessed October 11, 2025)