Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: David Carlson (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 29 of 29

High-harmonic generation in periodically poled waveguides

December 19, 2017
Author(s)
Daniel D. Hickstein, David R. Carlson, Abijith S. Kowligy, Matt Kirchner, Scott Domingue, Nima Nader, Henry R. Timmers, Alexander J. Lind, Gabriel G. Ycas, Margaret Murnane, Henry Kapteyn, Scott B. Papp, Scott A. Diddams
Optical waveguides made from periodically poled materials provide high confinement of light and enable the generation of new wavelengths via quasi-phase-matching, making them a key platform for nonlinear optics and photonics. However, such devices are not

Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

July 24, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Judith B. Olson, Richard W. Fox, Roger C. Brown, Andrew D. Ludlow, Qing Li, Daron A. Westly, Tara M. Fortier, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Supercontinuum generation using chip-integrated photonic waveguides is a powerful approach for spectrally broadening pulsed laser sources with very low pulse energies and compact form factors. When pumped with a mode-locked laser frequency comb, these

Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities

July 24, 2017
Author(s)
Daniel D. Hickstein, Hojoong Jung, David R. Carlson, Alexander J. Lind, Ian R. Coddington, Kartik A. Srinivasan, Gabriel G. Ycas, Daniel C. Cole, Abijith S. Kowligy, Stefan Droste, Erin S. Lamb, Nathan R. Newbury, Hong X. Tang, Scott A. Diddams, Scott B. Papp
Using aluminum-nitride photonic-chip waveguides, we generate optical frequency comb supercontinuum spanning 500~nm to 4000~nm, and show that the spectrum can be widely tailored by changing the geometry of the waveguide. Since aluminum nitride exhibits both

Self-referenced frequency combs using high-efficiency silicon nitride waveguides

June 12, 2017
Author(s)
David R. Carlson, Daniel D. Hickstein, Alexander J. Lind, Stefan Droste, Daron A. Westly, Nima Nader, Ian R. Coddington, Nathan R. Newbury, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
We utilize silicon nitride waveguides to self-reference telecom-wavelength fiber frequency combs through supercontinuum generation using less than 15 mW total optical average power. This is approximately ten times lower than conventional approaches using