Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Douglas Alan Bennett (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 51

Simultaneous readout of 128 X-ray and Gamma-ray Transition-edge Microcalorimeters using Microwave SQUID Multiplexing

August 8, 2017
Author(s)
John Mates, Dan Becker, Douglas Bennett, Johnathon Gard, James P. Hays-Wehle, Joseph Fowler, Gene C. Hilton, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Leila R. Vale, Joel Ullom
The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the array into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES)

A Reassessment of Absolute Energies of X-ray L Lines of Lanthanide Metals

June 28, 2017
Author(s)
Bradley Alpert, W.Bertrand (Randy) Doriese, Gene C. Hilton, Lawrence T. Hudson, Young I. Joe, Kelsey Morgan, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Csilla Szabo-Foster, Joel Ullom, Joseph Fowler, Galen O'Neil, Douglas Bennett
We introduce a new technique for determining x-ray fluorescence line energies and widths, and we present measurements made with this technique of 22 x-ray L lines from lanthanide-series elements. The technique uses arrays of transition-edge sensors

A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

May 16, 2017
Author(s)
William B. Doriese, Peter Abbamonte, Douglas A. Bennett, Edward V. Denison, Yizhi Fang, Daniel A. Fischer, Colin P. Fitzgerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Cherno Jaye, Jessica L. McChesney, Luis Miaja Avila, Kelsey M. Morgan, Young Il Joe, Galen C. O'Neil, Carl D. Reintsema, Fanny Rodolakis, Daniel R. Schmidt, Hideyuki Tatsuno, Jens Uhlig, Leila R. Vale, Joel N. Ullom, Daniel S. Swetz
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more

First application of superconducting transition-edge-sensor microcalorimeters to hadronic-atom x-ray spectroscopy

September 30, 2016
Author(s)
Douglas Bennett, W.Bertrand (Randy) Doriese, Joseph Fowler, Johnathon Gard, James P. Hays-Wehle, Gene C. Hilton, Carl D. Reintsema, Daniel Swetz, Joel Ullom
High-resolution pionic-atom x-ray spectroscopy was performed with an x-ray spectrometer based on a 240-pixel array of superconducting transition-edge-sensor (TES)microcalorimeters at the πM1 beam line of the Paul Scherrer Institute. The pionic-carbon 4 → 3

Code-division-multiplexed readout of large arrays of TES microcalorimeters

September 15, 2016
Author(s)
Kelsey M. Morgan, Bradley K. Alpert, Douglas A. Bennett, William B. Doriese, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young Il Joe, Galen C. O'Neil, Carl D. Reintsema, Edward V. Denison, Daniel R. Schmidt, Joel N. Ullom, Daniel S. Swetz
Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray micro-calorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code

Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

January 19, 2016
Author(s)
Hideyuki Tatsuno, William B. Doriese, Douglas A. Bennett, Catalina Curceanu, Joseph W. Fowler, Johnathon D. Gard, Fredrick P. Gustafsson, Tadashi Hashimoto, Ryugo S. Hayano, James P. Hays-Wehle, Gene C. Hilton, Mihail Iliescu, Shigeru Ishimoto, Kenta Itahashi, Masashiko Iwasaki, Keisuke Kuwabara, Yue Ma, Johann Marton, Hirofumi Noda, Galen C. O'Neil, Shinji Okada, Haruhiko Outa, Carl D. Reintsema, Masaharu Sato, Daniel R. Schmidt, Hexi Shi, Ken Suzuki, Takatoshi Suzuki, Jens Uhlig, Joel N. Ullom, Eberhard Widmann, Shinya Yamada, Johann Zmeskal, Daniel S. Swetz
A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV

Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors

December 29, 2015
Author(s)
Bradley K. Alpert, Elena Ferri, Douglas A. Bennett, Marco Faverzani, Joseph W. Fowler, Andrea Giachero, James P. Hays-Wehle, Angelo Nucciotti, Daniel S. Swetz, Joel N. Ullom
For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to comprise a leading

Developments in time-division multiplexing of X-ray transition-edge sensors.

December 8, 2015
Author(s)
William B. Doriese, Kelsey M. Morgan, Douglas A. Bennett, Edward V. Denison, Colin P. Fitzgerald, Joseph W. Fowler, Johnathon D. Gard, James P. Hays-Wehle, Gene C. Hilton, Kent D. Irwin, Young Il Joe, John A. Mates, Galen C. O'Neil, Carl D. Reintsema, Nigel O. Robbins, Daniel R. Schmidt, Daniel S. Swetz, Hideyuki Tatsuno, Joel N. Ullom, Leila R. Vale
Time-division multiplexing (TDM) is a mature scheme for the readout of transition-edge sensors. Variants of TDM, which is based on superconducting-quantum-interference-device (SQUID) current amplifiers, have to date been field-deployed in several

High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

May 1, 2015
Author(s)
W.Bertrand (Randy) Doriese, Joseph Fowler, Daniel Swetz, Cherno Jaye, Daniel A. Fischer, Carl D. Reintsema, Douglas Bennett, Leila R. Vale, Gene C. Hilton, Dan Schmidt, Joel Ullom, Jens Uhlig, Ujjwal Mandal, Galen O'Neil, Luis Miaja Avila, Young I. Joe, wilfrid fullagar, Fredrick P. Gustafsson, Dharma Kurunthu, Villy Sundstrom
X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low

Measurement of the 240Pu/239Pu Mass Ratio Using a Transition-Edge-Sensor Microcalorimeter for Total Decay Energy Spectroscopy

February 27, 2015
Author(s)
Daniel R. Schmidt, Douglas A. Bennett, James P. Hays-Wehle, Daniel S. Swetz, Joel N. Ullom, Andrew Hoover, Mark Croce, Michael W. Rabin, Evelyn Bond, Terry Holesinger, Gerd Kunde, Laura Wolfsbereg
We have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber

Integration of TES microcalorimeters with microwave SQUID multiplexed readout.

December 22, 2014
Author(s)
Douglas A. Bennett, John A. Mates, Johnathon D. Gard, Andrew Hoover, Micheal Rabin, Carl D. Reintsema, Daniel R. Schmidt, Leila R. Vale, Joel N. Ullom
The demonstration of a microwave SQUID multiplexed readout of transition-edge sensor (TES) microcalorimeters has the potential to dramatically expand the scale of arrays of TESs. In this manuscript we discuss recent work to develop an instrument for high

Phase-slip lines as a resistance mechanism in transition-edge sensors

January 27, 2014
Author(s)
Douglas A. Bennett, Daniel R. Schmidt, Daniel S. Swetz, Joel N. Ullom
The fundamental mechanism of resistance in voltage-biased superconducting films is poorly understood despite its importance as the basis of transition-edge sensors (TESs). TESs are utilized in state-of- the-art microbolometers and microcalorimeters

Identification and elimination of anomalous thermal decay in gamma-ray microcalorimeters

November 18, 2013
Author(s)
Robert D. Horansky, Douglas A. Bennett, Daniel R. Schmidt, Barry L. Zink, Joel N. Ullom
Microcalorimeter detectors rely on superconducting components and cryogenic temperatures to provide over an order-of-magnitude improvement in energy resolution compared to semiconducting sensors. Resolution improvements impact fields from gamma-ray

High resolution gamma-ray spectroscopy with a microwave-multiplexed TES array

November 11, 2013
Author(s)
Omid Noroozian, John A. Mates, Douglas A. Bennett, Justus A. Brevik, Joseph W. Fowler, Jiansong Gao, Robert D. Horansky, Kent D. Irwin, Daniel R. Schmidt, Joel N. Ullom, Zhao Kang
We demonstrate the first gamma-ray spectroscopy with a microwave-multiplexed two-pixel TES(transition-edge sensor) array. We measured a $^{153}$Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum (FWHM) at 97 keV and an

Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

May 15, 2013
Author(s)
Bradley K. Alpert, Robert D. Horansky, Douglas A. Bennett, William B. Doriese, Joseph W. Fowler, Andrew Hoover, Michael W. Rabin, Joel N. Ullom
We introduce a filter construction method for pulse processing that differs in two respects from that in standard optimal filtering, in which the average pulse shape and noise power spectral density are combined to create a convolution filter for

Table-top ultrafast x-ray microcalorimeter spectrometry for molecular structure

March 26, 2013
Author(s)
Jens (. Uhlig, William B. Doriese, Joseph W. Fowler, Daniel S. Swetz, Carl D. Reintsema, Douglas A. Bennett, Leila R. Vale, Gene C. Hilton, Kent D. Irwin, Joel N. Ullom, Ilari Maasilta, Wilfred Fullagar, Niklas Gador, Sophie Canton, Kimmo Kinnunen, Villy Sundstrom
This work presents an x-ray absorption measurement by use of ionizing radiation generated by a femtosecond pulsed laser source. The spectrometer was a microcalorimetric array whose pixels are capable of accurately measuring energies of individual radiation

Current Distribution and Transition Width in Superconducting Transition-Edge Sensors

December 13, 2012
Author(s)
Daniel S. Swetz, Douglas A. Bennett, Daniel R. Schmidt, Joel N. Ullom
Present models of the superconducting-to-normal transition in transition-edge sensors (TESs)do not describe the current distribution within a biased TES. This distribution is complicated by normal-metal features that are integral to TES design. We present

Observation of bias-specific telegraph noise in large transition-edge sensors

December 11, 2012
Author(s)
Vincent Y. Kotsubo, Douglas A. Bennett, Mark Croce, Michael W. Rabin, Daniel R. Schmidt, Joel N. Ullom
We have observed anomalous random telegraph noise in discrete regions of voltage bias throughout the superconducting transition in larger transition-edge sensors (TESs). The bimodal nature of these noise features is consistent with thermally activated

A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

September 28, 2012
Author(s)
Douglas A. Bennett, Robert D. Horansky, Daniel R. Schmidt, Andrew Hoover, Ryan Winkler, Bradley K. Alpert, James A. Beall, William B. Doriese, Joseph W. Fowler, Gene C. Hilton, Kent D. Irwin, Nathan J. Hoteling, Vincent Y. Kotsubo, John A. Mates, Galen C. O'Neil, Michael W. Rabin, Carl D. Reintsema, Francis J. Schima, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom
Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gammaray microcalorimeters, based on transition-edge sensors (TESs)

A two-fluid model for the transition shape in transition-edge sensors

May 1, 2012
Author(s)
Douglas A. Bennett, Daniel S. Swetz, Robert D. Horansky, Daniel R. Schmidt, Joel N. Ullom
Superconducting microcalorimeters based on transition-edge sensors (TESs) are being successfully used in applications ranging from optical photon counting to gamma-ray and alpha particle spectroscopy. Practical instruments often require a complex

An Analytical Model for Pulse Shape and Electrothermal Stability in Two-Body Microcalorimeters

September 9, 2010
Author(s)
Douglas A. Bennett, Robert D. Horansky, Daniel R. Schmidt, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom, Andrew Hoover, Michael W. Rabin, Nathan J. Hoteling
High resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct

Two-Body Models for Analyzing Complex Impedance

July 24, 2009
Author(s)
Douglas A. Bennett, Robert D. Horansky, Joel N. Ullom
Complex impedance is an important and widely used technique for characterizing microbolometers and microcalorimeters. Often, complex impedance data from actual devices does not fit the simple one-body model of a TES microcalorimeter. In this paper we will

Improved Isotopic Analysis With a Large Array of Gamma-Ray Microcalorimeters

June 30, 2009
Author(s)
Nikhil Jethava, Joel N. Ullom, Douglas A. Bennett, William B. Doriese, James A. Beall, Gene C. Hilton, Robert D. Horansky, Kent D. Irwin, Eric Sassi, Leila R. Vale, Minesh K. Bacrania, Andrew Hoover, P. J. Karpius, Michael W. Rabin, Clifford R. Rudy, Duc T. Vo
We present results from the largest array of gamma-ray microcalorimeters operated to date. The microcalorimeters consist of Mo/Cu transition-edge sensors with attached Sn absorbers. The detector array contains 66 pixels each with an active area 2.25 mm 2