Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Gene C. Hilton (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 166

Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

February 20, 2015
Author(s)
Johannes Hubmayr, James A. Beall, Daniel T. Becker, Hsiao-Mei Cho, Gene C. Hilton, Dale Li, David P. Pappas, Jeffrey L. Van Lanen, Mark Devlin, Kent D. Irwin, Chris Groppi, Phillip Mauskopf
We demonstrate photon-noise limited performance at sub-millimeter wavelengths in microwave kinetic inductance detectors (MKIDs) made of a new superconducting material, a TiN/Ti/TiN trilayer film. Optical coupling is achieved by use of feedhorns, a standard

Standoff passive video imaging at 350 GHz with 251 superconducting detectors

June 20, 2014
Author(s)
Daniel T. Becker, James A. Beall, Hsiao-Mei Cho, Gene C. Hilton, Nicholas G. Paulter Jr., Carl D. Reintsema, Robert E. Schwall, Cale Gentry, Ilya Smirnov, Peter Ade, W D. Duncan, Mark Halpern, Carole Tucker
Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) detectors makes them

Dual-polarization-sensitive kinetic inductance detectors for balloon-borne, sub-millimeter polarimetry

March 20, 2014
Author(s)
James A. Beall, Dan Becker, Justus Brevik, Hsiao-Mei Cho, Gene C. Hilton, Kent D. Irwin, Dale Li, David P. Pappas, Jeffrey L. Van Lanen, Johannes Hubmayr
We are developing arrays of kinetic inductance detectors for sub-millimeter polarimetry that will be deployed on the BLAST balloon-borne instrument. The array is feedhorn-coupled, and each pixel contains two lumped-element kinetic inductance detectors

Prototype Phantoms for Characterization of Ultra-Low Field Magnetic Resonance Imaging

November 26, 2013
Author(s)
Michael A. Boss, John A. Mates, Sarah E. Busch, Paul SanGiorgio, Stephen E. Russek, Kai Buckenmaier, Kent D. Irwin, Hsiao-Mei Cho, Gene C. Hilton, John Clarke
Purpose: Prototype phantoms were designed, constructed, and characterized for the purpose of calibrating ultralow field magnetic resonance imaging (ULF MRI) systems. The phantoms were designed to measure spatial resolution and to quantify sensitivity to

Table-top ultrafast x-ray microcalorimeter spectrometry for molecular structure

March 26, 2013
Author(s)
Jens (. Uhlig, William B. Doriese, Joseph W. Fowler, Daniel S. Swetz, Carl D. Reintsema, Douglas A. Bennett, Leila R. Vale, Gene C. Hilton, Kent D. Irwin, Joel N. Ullom, Ilari Maasilta, Wilfred Fullagar, Niklas Gador, Sophie Canton, Kimmo Kinnunen, Villy Sundstrom
This work presents an x-ray absorption measurement by use of ionizing radiation generated by a femtosecond pulsed laser source. The spectrometer was a microcalorimetric array whose pixels are capable of accurately measuring energies of individual radiation

Improvements in silicon oxide dielectric loss for superconducting microwave detector circuits

January 24, 2013
Author(s)
Dale Li, Jason Austermann, James A. Beall, Daniel T. Becker, Hsiao-Mei Cho, Anna E. Fox, Nils Halverson, Jason Henning, Gene C. Hilton, Johannes Hubmayr, Jeffrey L. Van Lanen, John P. Nibarger, Michael D. Niemack, Kent D. Irwin
Dielectric loss in low-temperature superconducting integrated circuits can cause lower overall efficiency, particularly in the 90 to 220 GHz regime. We present a method to tune the dielectric loss for silicon oxide deposited by plasma-enhanced chemical

Dual-polarization sensitive MKIDs for far infrared astrophysics

December 12, 2012
Author(s)
Johannes Hubmayr, James A. Beall, Daniel T. Becker, Hsiao-Mei Cho, Brad Dober, Mark Devlin, Anna E. Fox, Dale Li, Michael D. Niemack, David P. Pappas, Leila R. Vale, Kent D. Irwin, Gene C. Hilton
We present the design for arrays of dual-polarization sensitive, superconducting sensors for far infrared astrophysics. Each pixel is feedhorn-coupled and consists of orthogonal, lumped-element kinetic inductance detectors (LEKIDs) both fabricated in the

A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

September 28, 2012
Author(s)
Douglas A. Bennett, Robert D. Horansky, Daniel R. Schmidt, Andrew Hoover, Ryan Winkler, Bradley K. Alpert, James A. Beall, William B. Doriese, Joseph W. Fowler, Gene C. Hilton, Kent D. Irwin, Nathan J. Hoteling, Vincent Y. Kotsubo, John A. Mates, Galen C. O'Neil, Michael W. Rabin, Carl D. Reintsema, Francis J. Schima, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom
Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gammaray microcalorimeters, based on transition-edge sensors (TESs)

Demonstration of code-division multiplexing for x-ray microcalorimeters

February 13, 2012
Author(s)
Greg Stiehl, W.Bertrand (Randy) Doriese, Gene C. Hilton, Kent D. Irwin, Carl D. Reintsema, Dan Schmidt, Daniel Swetz, Joel Ullom, Leila R. Vale, Joseph Fowler
We demonstrate the code-division multiplexing (CDM) readout of eight transition-edge sensor microcalorimeters. The energy resolution is 3.0 eV (full width at half-maximum) or better at 5.9 keV, with a best resolution of 2.3 eV and a mean of 2.6 eV over the

Advanced Code-Division Multiplexers for Superconducting Detector Arrays

February 11, 2012
Author(s)
Kent D. Irwin, Hsiao-Mei Cho, William B. Doriese, Joseph W. Fowler, Gene C. Hilton, Michael D. Niemack, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Leila R. Vale
Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays

Optimization of the TES-bias circuit for a multiplexed microcalorimeter array

January 27, 2012
Author(s)
William B. Doriese, Bradley K. Alpert, Joseph W. Fowler, Gene C. Hilton, Alex S. Hojem, Kent D. Irwin, Carl D. Reintsema, Daniel R. Schmidt, Greg Stiehl, Daniel S. Swetz, Joel N. Ullom, Leila R. Vale
In the detector-bias circuit of a transition-edge-sensor (TES) microcalorimeter, the TES-shunt resistor (Rsh) and the thermal conductance to the cryogenic bath (G) are often considered to be interchangeable knobs with which to control detector speed

Optimization and analysis of code-division multiplexed TES microcalorimeters

January 20, 2012
Author(s)
Joseph W. Fowler, William B. Doriese, Gene C. Hilton, Kent D. Irwin, Daniel R. Schmidt, Greg Stiehl, Daniel S. Swetz, Joel N. Ullom, Leila R. Vale
We are developing code-division multiplexing (CDM) readout systems for TES arrays for good scalability to large multiplexing factors. We report high energy resolution x-ray measurements made through four-channel CDM that employ a flux-summing architecture

An 84 Pixel All-Silicon Corrugated Feedhorn for CMB Measurements

December 8, 2011
Author(s)
John P. Nibarger, James A. Beall, Daniel T. Becker, Joseph W. Britton, Hsiao-Mei Cho, Anna E. Fox, Gene C. Hilton, Johannes Hubmayr, Dale Li, Kent D. Irwin, Jeffrey L. Van Lanen, Jeff McMahon, Ki Won Yoon
Silicon platelet corrugated feedhorn for cosmic microwave background (CMB) measurements in the mm wave (130 to 170 GHz) have been developed for deployment for the polarization sensitive upgrade to both the Atacama Cosmology Telescope (ACTpol) and the South

Strongly quadrature-dependent noise in superconducting microresonators measured at the vacuum-noise limit

June 9, 2011
Author(s)
Jiansong Gao, Kent D. Irwin, Gene C. Hilton, John A. Mates, Daniel R. Schmidt, Leila R. Vale, Konrad W. Lehnert, Francois Mallet, Jonas Zmuidzinas
We report noise measurement of superconducting micro-resonators with a Josephson parametric amplifier. These resonators show significant amount of frequency noise caused by surface two-level systems. However, in the dissipation quadrature, no excess noise

A High Resolution High-Sensitivity Standoff Imaging System at 350 GHz

May 23, 2011
Author(s)
Daniel T. Becker, Cale Gentry, James A. Beall, Hsiao-Mei Cho, William Duncan, Gene C. Hilton, Kent D. Irwin, Peter J. Lowell, Michael D. Niemack, Nicholas G. Paulter Jr., Carl D. Reintsema, Francis J. Schima, Robert E. Schwall, Peter Ade, Carole Tucker, Simon Dicker, Halpern Mark
Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather conditions. The sensitivity provided by superconducting Transition-Edge-Sensor (TES) bolometers

Time-division SQUID multiplexers with reduced sensitivity to external magnetic fields

November 29, 2010
Author(s)
Greg Stiehl, Hsiao-Mei Cho, Gene C. Hilton, Kent D. Irwin, John A. Mates, Carl D. Reintsema, Barry L. Zink
We have developed time-division SQUID multiplexers to read out large arrays of transition-edge sensor (TES) detectors. These multiplexers are used in many applications that require exquisite control of systematic error. One important application is the

A 350-GHz high-resolution high-sensitivity passive video imaging system

April 27, 2010
Author(s)
Daniel T. Becker, James A. Beall, Hsiao-Mei Cho, William Duncan, Kent D. Irwin, Gene C. Hilton, Robert D. Horansky, Peter J. Lowell, Michael D. Niemack, Nicholas G. Paulter Jr., Carl D. Reintsema, Francis J. Schima, Robert E. Schwall, Ki W. Yoon, Peter Ade, Carole Tucker, Simon Dicker, Mark Halpern
We are developing a 350 GHz cryogenic passive video imaging system. This demonstration system uses 800 photon-noise-limited superconducting transition edge sensor bolometers. It will image a 1 m x 1 m area at a standoff distance of 16 m to a resolution of

Code-division SQUID multiplexing

April 23, 2010
Author(s)
Michael D. Niemack, Kent D. Irwin, Joern Beyer, Hsiao-Mei Cho, William B. Doriese, Gene C. Hilton, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Leila R. Vale
Multiplexed superconducting quantum interference device (SQUID) readout systems are a critical technology for measuring large arrays of superconducting transition-edge sensor (TES) detectors. Current successful SQUID multiplexing architectures are

Superconductor Science and Technology

February 22, 2010
Author(s)
Kent D. Irwin, Michael D. Niemack, Joern Beyer, Hsiao-Mei Cho, William B. Doriese, Gene C. Hilton, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Leila R. Vale
Multiplexed superconducting quantum interference device (SQUID) amplifiers have recently enabled the deployment of kilopixel arrays of superconducting transition-edge sensor (TES) detectors on a variety of receivers for astrophysics. Existing multiplexing

Electronics for a Next-Generation SQUID-Based Time-Domain Multiplexing System

December 16, 2009
Author(s)
Carl D. Reintsema, Gene C. Hilton, Kent D. Irwin, Joseph S. Adams, Robert Baker, Simon R. Bandler, William B. Doriese, Enectali Figueroa-Feliciano, Richard L. Kelly, Caroline A. Kilbourne, F. S. Porter, Jeff Krinsky, Patrick Wikus
A decade has elapsed since the design, development and realization of a SQUID-based time-division multiplexer at NIST. During this time the system has been used extensively for low-temperature-detector-array measurements. Concurrently, there have been

Optimal filtering, record length, and count rate in transition-edge-sensor microcalorimeters

December 16, 2009
Author(s)
William B. Doriese, Gene C. Hilton, Kent D. Irwin, Francis J. Schima, Joel N. Ullom, Joseph S. Adams, Caroline A. Kilbourne
In typical algorithms for optimally filtering transition-edge-sensor-microcalorimeter pulses, the average value of a filtered pulse is set to zero. The achieved energy resolution of the detector then depends strongly on the chosen length of the pulse

Progress Toward Corrugated Feed Horn Arrays in Silicon

December 16, 2009
Author(s)
Joseph W. Britton, Ki W. Yoon, James A. Beall, Daniel T. Becker, Hsiao-Mei Cho, Gene C. Hilton, Michael D. Niemack, Kent D. Irwin
We are developing monolithic arrays of corrugated feed horns fabricated in silicon for dual-polarization single mode operation at 90, 145 and 220 GHz. The arrays consist of hundreds of platelet feed horns assembled from gold coated stacks of micromachined

Improved Isotopic Analysis With a Large Array of Gamma-Ray Microcalorimeters

June 30, 2009
Author(s)
Nikhil Jethava, Joel N. Ullom, Douglas A. Bennett, William B. Doriese, James A. Beall, Gene C. Hilton, Robert D. Horansky, Kent D. Irwin, Eric Sassi, Leila R. Vale, Minesh K. Bacrania, Andrew Hoover, P. J. Karpius, Michael W. Rabin, Clifford R. Rudy, Duc T. Vo
We present results from the largest array of gamma-ray microcalorimeters operated to date. The microcalorimeters consist of Mo/Cu transition-edge sensors with attached Sn absorbers. The detector array contains 66 pixels each with an active area 2.25 mm 2

Improved Isotopic Analysis with a Large Array of Gamma-ray Microcalorimeters

June 30, 2009
Author(s)
Nikhil Jethava, Joel N. Ullom, Douglas A. Bennett, William B. Doriese, James A. Beall, Gene C. Hilton, Robert D. Horansky, Kent D. Irwin, Eric Sassi
We present results from the largest array of gamma-ray microcalorimeters operated to date. The microcalorimeters consist of Mo/Cu transition-edge sensors with attached Sn absorbers. The detector array contains 66 pixels each with an active area 2.25 mm2