Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Marcelo Davanco (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 116

Dissipative Kerr Solitons in a III-V Microresonator

June 22, 2020
Author(s)
Gregory T. Moille, Lin Chang, Weiqiang Xie, Ashutosh S. Rao, Xiyuan Lu, Marcelo I. Davanco, John E. Bowers, Kartik A. Srinivasan
We demonstrate stable microresonator Kerr solitons in a III-V platform through cryogenic quenching of the thermorefractive effect. Such phase-stable operation is critical to fully exploit the high nonlinearity and low loss available in this platform.

High-Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures

May 18, 2020
Author(s)
Georg Ramer, Mohit Tuteja, Joseph R. Matson, Marcelo I. Davanco, Thomas G. Folland, Andrey Kretinin, Takashi Taniguchi, Kenji Watanabe, Kostya Novoselov, Joshua D. Caldwell, Andrea Centrone
The anisotropy of hexagonal boron nitride (hBN) crystals gives rise to hyperbolic phonon polaritons (HPhPs), notable for their volumetric frequency-dependent angular propagation and strong confinement. For frustum (truncated nanocone) structures, theory

Advanced technologies for quantum photonic devices based on epitaxial quantum dots

October 11, 2019
Author(s)
Tian M. Zhao, Yan Chen, Yu Ying, Li Qing, Marcelo I. Davanco, Jin Liu
Photonic quantum technology is creating breakthroughs in both fundamental quantum science and applications such as quantum communication, computation and sensing. Regarded as artificial atoms due to the discrete energy levels they support, semiconductor

Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits

September 15, 2019
Author(s)
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
With in-situ electron beam lithography we deterministically integrate single InAs quantum dots into heterogeneous GaAs/Si3N4 waveguide circuits. Through microphotoluminescence spectroscopy, we show on-chip quantum dot emission of single, postselected

Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits

August 30, 2019
Author(s)
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
Silicon photonics enables the integration of multi-functional quantum networks on a chip. Inclusion of quantum emitters acting as on-demand single-photon source or photon non-linearity is highly desirable to boost scalability and functionality. Towards

Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication

June 13, 2018
Author(s)
Jin Liu, Kumarasiri Konthasinghe, Marcelo I. Davanco, John Lawall, Vikas Anant, Varun Verma, Richard Mirin, Jin Dong Song, Ben Ma, Ze Sheng Chen, Hai Qiao Ni, Zhi Chuan Niu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are a promising solid-state quantum technology, with vacuum Rabi splitting, single-photon-level nonlinearities, and bright, pure, and indistinguishable single-photon generation having been demonstrated. In such

Nanoscale mapping and spectroscopy of non-radiative hyperbolic modes in hexagonal boron nitride nanostructures

March 14, 2018
Author(s)
Lisa Brown, Marcelo I. Davanco, Zhiyuan Sun, Andrey Kretinin, Yiguo Chen, Joseph R. Matson, Igor Vurgaftman, Nicholas Sharac, Alexander Giles, Michael Fogler, Takashi Taniguchi, Kenji Watanabe, Kostya Novoselov, Stefan Maier, Andrea Centrone, Joshua D. Caldwell
Because of its inherent crystal anisotropy, hexagonal boron nitride (hBN) supports naturally hyperbolic phonon polaritons, i.e. polaritons that can propagate with arbitrarily large wavevectors within the material volume, thereby enabling optical

Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices

October 12, 2017
Author(s)
Marcelo I. Davanco, Liu Jin, Luca Sapienza, Chen-Zhao Zhang, Jose Vinicius De Miranda Cardoso, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Liu Liu, Kartik A. Srinivasan
Photonic integration is establishing itself as an enabling technology for photonic quantum science, offering considerably greater scalability, stability, and functionality than traditional bulk optics. Here, we develop a scalable, heterogeneous III-V /