Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kartik Srinivasan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 162

Automated on-axis direct laser writing of coupling elements for photonic chips

December 21, 2020
Author(s)
Edgar Perez, Gregory Moille, Xiyuan Lu, Daron Westly, Kartik Srinivasan
Direct laser writing (DLW) has recently been used to create versatile micro-optic structures that facilitate photonic-chip coupling, like free-form lenses, free-form mirrors, and photonic wirebonds. However, at the edges of photonic chips, the top-down/off

Improved coupled-mode theory for high-index-contrast photonic platforms

December 4, 2020
Author(s)
Qing Li, Gregory Moille, Hossein Taheri, Ali Adibi, Kartik Srinivasan
Coupled-mode theory has been widely used in optics and photonics design. Despite its popularity, several different formulations of coupled-mode theory exist in the literature and their applicable range is not entirely clear, in particular when it comes to

Efficient photoinduced second-harmonic generation in silicon nitride photonics

November 2, 2020
Author(s)
Xiyuan Lu, Gregory Moille, Ashutosh Rao, Daron Westly, Kartik Srinivasan
Silicon photonics lacks a second-order nonlinear optical (chi(2)) response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits chi(2) nonlinear processes such as second harmonic generation

Dissipative Kerr Solitons in a III-V Microresonator

June 22, 2020
Author(s)
Gregory T. Moille, Lin Chang, Weiqiang Xie, Ashutosh S. Rao, Xiyuan Lu, Marcelo I. Davanco, John E. Bowers, Kartik A. Srinivasan
We demonstrate stable microresonator Kerr solitons in a III-V platform through cryogenic quenching of the thermorefractive effect. Such phase-stable operation is critical to fully exploit the high nonlinearity and low loss available in this platform.

Heterogeneous photodiodes on silicon nitride waveguides

May 11, 2020
Author(s)
Qianhuan Yu, Junyi Gao, Nan Ye, Baiheng Chen, Keye Sun, Linli Xie, Kartik Srinivasan, Michael Zervas, Gabriele Navickaite, Michael Geiselmann, Andreas Beling
Heterogeneous integration through low-temperature die bonding is a promising technique to enable high-performance III-V photodetectors on the silicon nitride (Si3N4) photonic platform. Here we demonstrate InGaAs/InP modified uni-traveling carrier

Hybrid integrated quantum photonic circuits

April 13, 2020
Author(s)
Ali Elshaari, Wolfram Pernice, Kartik Srinivasan, Oliver Benson, Val Zwiller
Recent development in chip-based photonic quantum circuits has radically impacted the ways in which we can process quantum information. However, it is challenging for any one specific integrated photonics platform to meet the stringent demands for most

Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics

December 20, 2019
Author(s)
Xiyuan Lu, Gregory Moille, Anshuman Singh, Qing Li, Daron Westly, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The on-chip creation of coherent light at visible wavelengths is of interest to many applications in spectroscopy, sensing, and metrology. Towards that goal, here we propose and demonstrate the first on-chip visible-telecom optical parameteric oscillator

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

November 22, 2019
Author(s)
Qing Li, Anshuman Singh, Xiyuan Lu, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Kartik Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of two essential building blocks for quantum information science - quantum sources and frequency

Broadband Resonator-Waveguide Coupling for Efficient Extraction of Octave Spanning Microcombs

October 1, 2019
Author(s)
Gregory Moille, Qing Li, Travis Briles, Su P. Yu, Tara E. Drake, Xiyuan Lu, Ashutosh Rao, Daron Westly, Scott Papp, Kartik Srinivasan
Frequency combs spanning over an octave have been successfully demonstrated on-chip in Kerr nonlinear microresonators, thanks to their large effective nonlinearity and ability to support a suitable dispersion profile. Efficient extraction of intracavity

Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures

September 27, 2019
Author(s)
Gregory Moille, Xiyuan Lu, Ashutosh Rao, Qing Li, Daron Westly, Leonardo Ranzani, Scott Papp, Mohammad Soltani, Kartik Srinivasan
We present measurements of silicon nitride nonlinear microresonators and frequency comb generation at cryogenic temperatures as low as 7 K. A resulting two orders of magnitude reduction in the thermo-refractive coefficient relative to room-temperature

Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon

September 18, 2019
Author(s)
Jeff Chiles, Nima Nader, Eric Stanton, Daniel Herman, Galan Moody, Biswarup Guha, Kartik Srinivasan, Scott Diddams, Ian Coddington, Nathan Newbury, Jeff Shainline, Sae Woo Nam, Richard Mirin, Jiangang Zhu, Juliet Gopinath, Connor Fredrick
The microscale integration of mid- and longwave-infrared photonics could enable the development of fieldable and reliable chemical sensors. The choice of material platform immediately determines the strength and types of optical nonlinearities available

Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits

September 15, 2019
Author(s)
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
With in-situ electron beam lithography we deterministically integrate single InAs quantum dots into heterogeneous GaAs/Si3N4 waveguide circuits. Through microphotoluminescence spectroscopy, we show on-chip quantum dot emission of single, postselected

Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits

August 30, 2019
Author(s)
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
Silicon photonics enables the integration of multi-functional quantum networks on a chip. Inclusion of quantum emitters acting as on-demand single-photon source or photon non-linearity is highly desirable to boost scalability and functionality. Towards

Terahertz-Rate Kerr-Microresonator Optical Clockwork

August 12, 2019
Author(s)
Tara E. Drake, Travis Briles, Daryl T. Spencer II, Jordan R. Stone, David R. Carlson, Daniel D. Hickstein, Qing Li, Daron A. Westly, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Kerr microresonators generate interesting and useful fundamental states of electromagnetic radiation through nonlinear interactions of continuous-wave (CW) laser light. When implemented with photonic-integration techniques, functional devices with low

Photonic-crystal-reflector nano-resonators for Kerr-frequency combs

July 8, 2019
Author(s)
Su P. Yu, Hojoong Jung, Travis Briles, Kartik Srinivasan, Scott Papp
We demonstrate Kerr-frequency-comb generation with photonic-crystal-reflector (PCR) resonators, which is nanofabricated in a Fabry-Perot geometry. The group-velocity-dispersion (GVD) engineered photonic-crystal reflectors counteract the strong normal GVD

Efficient telecom-to-visible spectral translation through ultra-low power nonlinear nanophotonics

June 24, 2019
Author(s)
Xiyuan Lu, Gregory Moille, Qing Li, Daron Westly, Anshuman Singh, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to connect the telecommunications band with visible and short near-infrared
Was this page helpful?