Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 176 - 200 of 846

Two-beam coupling by a hot electron nonlinearity

January 15, 2021
Author(s)
Jagannath Paul, Mario Miscuglio, Yaliang Gui, Volker Sorger, Jared Wahlstrand
Transparent conductive oxides such as indium tin oxide (ITO) have attracted much recent interest for their enhanced optical nonlinearity near the epsilon near zero wavelength. The nonlinearity of these materials is caused by laser heating of electrons

Coherent optical processes with an all-optical atomic simulator

January 4, 2021
Author(s)
Ivan Burenkov, Sergey Polyakov, Olga Tikhonova, Irina Novikova
We show how novel photonic devices such as broadband quantum memory and efficient quantum frequency transduction can be implemented using three-wave mixing processes in a 1D array of nonlinear waveguides evanescently coupled to nearest neighbors. We do

Independent Amplitude Control of Arbitrary Orthogonal States of Polarization via Dielectric Metasurfaces

December 23, 2020
Author(s)
Qingbin Fan, Mingze Liu, Cheng Zhang, Wenqi Zhu, Yilin Wang, Peicheng Lin, Feng Yan, Lu Chen, Henri Lezec, Yanqing Lu, Amit Agrawal, Ting Xu
Exquisite polarization control using optical metasurfaces has attracted considerable attention thanks to their ability to manipulate multichannel independent wavefronts with subwavelength resolution. Here we present a new class of metasurface polarization

Feedback Induced Magnetic Phases in Binary Bose-Einstein Condensates

December 7, 2020
Author(s)
Ian B. Spielman, Shangjie Guo, Hilary M. Hurst
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using

Improved coupled-mode theory for high-index-contrast photonic platforms

December 4, 2020
Author(s)
Qing Li, Gregory Moille, Hossein Taheri, Ali Adibi, Kartik Srinivasan
Coupled-mode theory has been widely used in optics and photonics design. Despite its popularity, several different formulations of coupled-mode theory exist in the literature and their applicable range is not entirely clear, in particular when it comes to

Experimental demonstration of the near-quantum optimal receiver

November 19, 2020
Author(s)
Jabir Marakkarakath Vadakkepurayil, Ivan Burenkov, FNU Nur Fajar Rizqi Annafianto, Abdella Battou, Sergey Polyakov
We implement the cyclic quantum receiver based on the theoretical proposal of Roy Bondurant and demonstrate experimentally below the shot-noise limit (SNL) discrimination of quadrature phase-shift keying signals (PSK). We also experimentally test the

Efficient photoinduced second-harmonic generation in silicon nitride photonics

November 2, 2020
Author(s)
Xiyuan Lu, Gregory Moille, Ashutosh Rao, Daron Westly, Kartik Srinivasan
Silicon photonics lacks a second-order nonlinear optical (chi(2)) response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits chi(2) nonlinear processes such as second harmonic generation

Nonlinearity and ionization in Xe: Experiment-based calibration of a numerical model

October 12, 2020
Author(s)
Joseph Tolliver, Sina Zahedpour, Jared Wahlstrand, H M. Milchberg, Miroslav Kolesik
A model for the optical response of Xenon, including the nonlinear polarization and ionization rate, is calibrated with the help of space-and-time resolved measurements. Utilizing an idea of universal functional form for the response as a function of the

Time-Resolving Quantum Measurement Enables Energy-Efficient, Large-Alphabet Communication

September 21, 2020
Author(s)
Ivan Burenkov, Jabir Marakkarakath Vadakkepurayil, Abdella Battou, Sergey Polyakov
Information exchange requires a measurement of physical states. Because quantum measurements enable accuracy beyond the classical shot-noise limit, they are successfully used to develop measurement tools and applications. In particular, quantum-measurement

Calibration of free-space and fiber-coupled single-photon detectors

September 14, 2020
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled silicon single-photon avalanche diode

Radiation Pressure Laser Power Meter for Industrial Laser Machining

September 10, 2020
Author(s)
Alexandra Artusio-Glimpse, Ivan Ryger, Natalia A. Azarova, Paul A. Williams, John Lehman
Demonstration and validation of a linear radiation pressure-based high-power laser power meter is presented. To date, this device is the most promising real-time, absolute power meter for laser material processing where power monitoring is crucial.

Plasmon Lasers

August 26, 2020
Author(s)
Wenqi Zhu, Shawn M. Divitt, Matthew S. Davis, Cheng Zhang, Ting Xu, Henri Lezec, Amit Agrawal
Recent advancements in the ability to design, fabricate and characterize optical and optoelectronic devices at the nanometer scale have led to tremendous developments in the miniaturization of optical systems and circuits. Development of wavelength scale

Ultrafast waveform metrology: A first international comparison

August 24, 2020
Author(s)
Mark Bieler, Paul Struszewski, Ari Feldman, Jeffrey Jargon, Paul D. Hale, Pengwei Gong, Wen Xie, Chuntao Yang, Zhigang Feng, Kejia Zhao, Zhijun Yang
We report on the first international comparison in ultrafast waveform metrology. To this end, the frequency and time responses of a photodiode with a nominal bandwidth of 100 GHz have been measured by several National Metrology Institutes during the last

Low-loss Metasurface Optics down to the Deep Ultraviolet

August 9, 2020
Author(s)
Cheng Zhang, Shawn M. Divitt, Qingbin Fan, Wenqi Zhu, Amit Agrawal, Yanqing Lu, Ting Xu, Henri Lezec
Metasurfaces, planar arrays of subwavelength electromagnetic structures that collectively mimic the functionality of much thicker conventional optical elements, have been demonstrated at frequencies ranging from the microwave up to the visible. Here, we
Displaying 176 - 200 of 846
Was this page helpful?