NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Jagannath Paul, Mario Miscuglio, Yaliang Gui, Volker Sorger, Jared Wahlstrand
Abstract
Transparent conductive oxides such as indium tin oxide (ITO) have attracted much recent interest for their enhanced optical nonlinearity near the epsilon near zero wavelength. The nonlinearity of these materials is caused by laser heating of electrons, with a subpicosecond relaxation time due to cooling to the lattice. We consider two beam interaction in a material with a hot electron nonlinearity. A nonlinear transient grating modifies the effective nonlinearity experienced by one pulse from the other. Theoretical results are compared to polarization- and chirp-dependent pump- probe experiments on an ITO film. Two-beam coupling can enhance and modify the nonlinearity in a slightly nondegenerate pump-probe scheme, which could impact applications such as all-optical modulation. Our results apply to the interpretation of pump-probe experiments on any material with a hot electron nonlinearity.
Paul, J.
, Miscuglio, M.
, Gui, Y.
, Sorger, V.
and Wahlstrand, J.
(2021),
Two-beam coupling by a hot electron nonlinearity, Optics Letters, [online], https://dx.doi.org/10.1364/OL.413649, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930240
(Accessed October 13, 2025)