Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 276 - 300 of 908

Classical polarimetry with a twist: a compact, geometric approach

May 22, 2019
Author(s)
William Sparks, Thomas Germer, Rebecca M. Sparks
We present an approach to classical polarimetry which requires no moving parts, is compact and robust, and which encodes the complete polarization information on a single data frame, accomplished by replacing the rotation of components such as wave plates

Spectrometer stray light can bias retrievals of solar-induced fluorescence

May 14, 2019
Author(s)
Loren Albert, Katherine Cushman, Yuqin Zong, David Allen, Luis Alonso, James Kellner
Remote sensing of solar induced chlorophyll fluorescence (SIF) promises a significant advance in our ability to quantify gross primary productivity across spatial scales. Because the fluorescence emission is usually 5 % of recorded canopy radiance

Unraveling Low Abundance Intimate Mixtures with Deep Learning

May 14, 2019
Author(s)
Ronald G. Resmini, Kevin Christiansen, David Allen
The high-confidence detection and identification of very low abundance, subpixel quantities of solid materials in nonlinear/intimate mixtures are still significant challenges for hyperspectral imagery (HSI) data analysis. We compare the ability of a

High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy

May 13, 2019
Author(s)
Junhui Shi, Terrence Wong, Yun He, Lei Li, Ruiying Zhang, Christopher Yung, Jeeseong C. Hwang, Lihong Wang
Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong

A Synchrotron X-ray Micro-Spectroscopy Study of the Explosive Melt Glass Derived From the Trinity Nuclear Test

April 28, 2019
Author(s)
Bruce Ravel, Daniel E. Crean, Daniel J. Bailey, M. C. Stennett, Claire L. Corkhill, Ryan Tappero, N. C. Hyatt
Trinitite, the explosive melt glass derived from the Trinity nuclear test, is of interest as a model material for nuclear forensics investigation. However, there remains uncertainty as to the mechanism of trinitite formation. In this study, new insight is

Microcontroller based scanning transfer cavity lock with environmental compensation

April 22, 2019
Author(s)
Sarthak Subhankar, Alessandro Restelli, Yang Wang, Steve Rolston, James V. Porto
We present a compact, cost-effective, and all-digital implementation of a scanning transfer cavity lock (STCL) for long term laser frequency stabilization. An interrupt-based, event-centric state machine is employed to realize the STCL, with the capability

Dual comb spectroscopy with tailored spectral broadening in nanophotonic Si3N4

April 15, 2019
Author(s)
Esther Baumann, Edgar Perez, Gabriel M. Colacion, Fabrizio Giorgetta, Kevin Cossel, Gabriel Ycas, David Carlson, Kartik Srinivasan, Scott Papp, Ian Coddington, Nathan Newbury
Spectral broadening of compact robust Er+: fiber combs is demonstrated with tailored Si3N4 waveguides to obtain spectrally-smooth broadened light in the 2 μm 2.5 μm atmospheric water window for gas spectroscopy. This successfully extends the Er+ spectrum

A TES X-ray Spectrometer for NSENSE

March 25, 2019
Author(s)
Christine G. Pappas, Malcolm S. Durkin, Joseph W. Fowler, Kelsey M. Morgan, Joel N. Ullom, William B. Doriese, Gene C. Hilton, Galen C. O'Neil, Daniel R. Schmidt, Paul Szypryt, Daniel S. Swetz
The Non-destructive Statistical Estimation of Nanoscale Structures and Electronics NSENSE instrument for IARPAs Rapid Analysis of Various Emerging Nanoelectronics RAVEN program is a tabletop X-ray tomography prototype designed for three-dimensional imaging

Demonstration of Athena X-IFU Compatible 40-Row Time-Division-Multiplexed Readout

March 19, 2019
Author(s)
Malcolm S. Durkin, Joseph S. Adams, Simon R. Bandler, James A. Chervenak, Saptarshi Chaudhuri, Carl S. Dawson, Edward V. Denison, William B. Doriese, Shannon M. Duff, F. M. Finkbeiner, C. T. FitzGerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young I. Joe, R. L. Kelley, Caroline A. Kilbourne, A. R. Miniussi, Kelsey M. Morgan, Galen C. O'Neil, Christine G. Pappas, F. S. Porter, Carl D. Reintsema, David A. Rudman, Kazuhiro Sakai, Stephen J. Smith, Robert W. Stevens, Daniel S. Swetz, Paul Szypryt, Joel N. Ullom, Leila R. Vale, N. Wakeham, Joel C. Weber, B. A. Young
Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for european space agency's Athena satellite mission

Raman Imaging of Surface and Sub-Surface Graphene Oxide in Fiber Reinforced Polymer Nanocomposites

March 1, 2019
Author(s)
Amber D. McCreary, Qi An, Aaron M. Forster, Kunwei Liu, Siyao He, Chris Macosko, Andreas Stein, Angela R. Hight Walker
The incorporation of nanofillers, such as graphene oxide (GO) into fiber reinforced polymer composites to improve their mechanical properties is a significant research area for a variety of industrial applications. However, to date there is no reliable

Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths

February 5, 2019
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Kevin Cossel, Eleanor M. Waxman, Esther Baumann, Nathan Newbury, Ian Coddington
Open-path measurements of atmospheric gas species in the air, including volatile organic compounds, are essential to quantify emissions from sources like oil and gas, forest fires, and industry. Here, we extend open-path dual-comb spectroscopy to probe the

Slow- and rapid-scan frequency-swept electrically detected magnetic resonance of MOSFETs with a non-resonant microwave probe within a semiconductor wafer-probing station

January 14, 2019
Author(s)
Duane J. McCrory, Mark Anders, Jason Ryan, Pragya Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason Campbell
We report on a novel electron paramagnetic resonance (EPR) technique that merges electrically detected magnetic resonance (EDMR) with a conventional semiconductor wafer probing station. This union, which we refer to as wafer-level EDMR (WL-EDMR), allows

Real-time liquid-phase organic reaction monitoring with a mid-infrared dual frequency comb spectrometer

January 10, 2019
Author(s)
Daniel I. Herman, Eleanor M. Waxman, Gabriel G. Ycas, Fabrizio R. Giorgetta, Nathan R. Newbury, Ian R. Coddington
We combine high-resolution mid-infrared dual-comb spectroscopy with attenuated total reflectance measurements to provide in-situ monitoring of a chemical reaction. The mid-infrared dual-comb spectrometer measures quantitative absorption cross-sections of

Improving the Retrieval of XCO2 from Total Carbon Column Network Solar Spectra

January 3, 2019
Author(s)
Joseph Mendonca, Kimberly Strong, Debra Wunch, Geoffrey Toon, David Long, Joseph T. Hodges, Vincent T. Sironneau
High-resolution absorption spectra of the a^1 ∆_g←X^3 Σ_g^- O2 band measured using cavity ring-down spectroscopy were fitted using the Voigt and speed-dependent Voigt line shapes. We found that the speed-dependent Voigt line shape was better able to model

Measurement of Ion-Pairing Interactions in Buffer Solutions with Microwave Microfluidics

January 1, 2019
Author(s)
Charles A. Little, Angela C. Stelson, Nathan D. Orloff, Christian J. Long, James C. Booth
Broadband microwave microfluidics is an emerging technique for quantifying the frequency dependent electrical response of fluids in the microwave regime. This technique can access important physical properties including interfacial polarization, ion

Diagonal Slice Four-Wave Mixing: Natural Separation of Coherent Broadening Mechanisms

December 13, 2018
Author(s)
Travis M. Autry, Geoffrey M. Diederich, Mark E. Siemens
We present an ultrafast coherent spectroscopy data acquisition scheme that samples slices of the time domain used in multidimensional coherent spectroscopy to achieve faster data collection than full spectra. We derive analytical expressions for resonance

Multi-pulse fitting of transition edge sensor signals from a near-infrared continuous-wave source

December 11, 2018
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Jianwei Lee, Lijiong Shen, Alessandro Cere, Christian Kurtsiefer
Transition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux

Approximating vibronic spectroscopy with imperfect quantum optics

November 23, 2018
Author(s)
W.R. Clements, Jelmer Renema, Andreas Eckstein, Antonio A. Valido, Adriana Lita, Thomas Gerrits, Sae Woo Nam, Steven Kolthammer, Joonsuk Huh
We study the impact of experimental imperfections on a recently proposed protocol for performing quantum simulations of vibronic spectroscopy. Specifically, we propose a method for quantifying the impact of these imperfections, optimizing an experiment to

Gain Calibration of Current-to-Voltage Converters

November 19, 2018
Author(s)
Thomas C. Larason, Carl C. Miller
Current-to-voltage converters are used in many photometric and radiometric applications. The calibration of current- to-voltage converters at a few input currents is not always sufficient to understand the linearity and the bias of a device. Many devices
Displaying 276 - 300 of 908
Was this page helpful?