Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 251 - 275 of 672

Spectroscopic analysis of M- and N-intrashell transitions in Co-like to Na-like Yb ions

December 19, 2021
Author(s)
Yuri Ralchenko, Dipti Goyal, Roshani Silwal, Endre Takacs, Joan Dreiling, Samuel Sanders, Amy Gall, Hemalatha Rudramadevi, John Gillaspy
The M-intrashell spectra from Co-like Yb$^43+}$ through Na-like Yb$^59+}$ ions produced in an electron beam ion trap (EBIT) at the National Institute of Standards and Technology have been studied in the extreme ultraviolet (EUV) range. A few N-intrashell

Path-integral calculation of the third dielectric virial coefficient of noble gases

December 15, 2021
Author(s)
Giovanni Garberoglio, Allan H. Harvey, Bogumil Jeziorski
We present a rigorous framework for fully quantum calculation of the third dielectric virial coefficient C_eps(T) of noble gases, including exchange effects. The quantum efects are taken into account with the path-integral Monte Carlo method. Calculations

Cavity Entanglement and State Swapping to Accelerate the Search for Axion Dark Matter

December 10, 2021
Author(s)
K. Wurtz, B.M. Brubaker, Y. Jiang, Elizabeth Ruddy, Dan Palken, Konrad Lehnert
In cavity-based axion dark matter detectors, quantum noise remains a primary barrier to achieving the scan rate necessary for a comprehensive search of the axion parameter space. Here we introduce a method of scan rate enhancement in which an axion

Measurement of electric-field noise from interchangeable samples with a trapped-ion sensor

November 18, 2021
Author(s)
Kyle McKay, Dustin Hite, Philip D. Kent, Shlomi S. Kotler, Dietrich Leibfried, Daniel Slichter, Andrew C. Wilson, David P. Pappas
We demonstrate the use of a single trapped ion as a sensor to probe electric-field noise from interchangeable test surfaces. As proof of principle, we measure the magnitude and distance dependence of electric-field noise from two ion-trap-like samples with

A simple imaging solution for chip-scale laser cooling

November 1, 2021
Author(s)
John Kitching, Gabriela Martinez, A, Gregazzi, Paul Griffin, Aidan Arnold, D. P. Burt, Rodolphe Bouldot, Erling Riis, James McGilligan
We demonstrate a simple stacked scheme that enables absorption imaging through a hole in the surface of a grating magneto-optical trap (GMOT) chip, placed immediately below a micro-fabricated vacuum cell. The imaging scheme is capable of overcoming the

Dual current anomalies and quantum transport within extended reservoir simulations

October 19, 2021
Author(s)
Gabriela Wojtowicz, Justin E. Elenewski, Marek Rams, Michael P. Zwolak
Quantum transport simulations are rapidly evolving, including the development of well–controlled tensor network techniques for many– body transport calculations. One particularly powerful approach combines matrix product states with extended reservoirs —

Sequential Bayesian experiment design for adaptive Ramsey sequence measurements.

October 11, 2021
Author(s)
Robert D. McMichael, Sergey Dushenko, Sean Blakley
The Ramsey sequence is a canonical example of a quantum phase determination for a spin qubit, but when readout fidelity is low, as with NV centers, measurement efficiency can be increased by focusing measurement resources on the most productive settings

Three-dimensional dipolar thermalization in a reactive molecular gas with resonant shielding

October 1, 2021
Author(s)
Jun-Ru Li, William Tobias, Kyle Matsuda, Calder Miller, Giacomo Valtolina, Luigi De Marco, Rueben Wang, John Bohn, Goulven Quemener, Jun Ye
We demonstrate suppression of the reactive loss in a gas of ultracold 40K 87Rb molecules in a three-dimensional geometry. The electric field-induced collisional shielding suppresses loss by two orders of magnitude while preserving elastic, long-range

Wilson loop and Wilczek-Zee phase from a non-Abelian gauge field

September 30, 2021
Author(s)
Ian Spielman, Francisco Salces Carcoba, Andika Putra, Yuchen Yue, Seiji Sugawa
Quantum states can acquire a geometric phase called the Berry phase after adiabatically traversing a closed loop, which depends on the path not the rate of motion. The Berry phase is analogous to the Aharonov–Bohm phase derived from the electromagnetic

Performance of Reservoir Discretizations in Quantum Transport Simulations

September 29, 2021
Author(s)
Justin E. Elenewski, Gabriela Wojtowicz, Marek Rams, Michael P. Zwolak
Quantum transport simulations require a level of discretization, often achieved through an explicit representation of the electronic reservoirs. These representations should converge to the same continuum limit, though there is a trade-off between a given

Collective P-Wave Orbital Dynamics of Ultracold Fermions

September 28, 2021
Author(s)
Mikhail Mamaev, Peiru He, Thomas Bilitewski, Vijin Venu, Joseph Thywissen, Ana Maria Rey
We introduce a protocol to observe p-wave interactions in ultracold fermionic atoms loaded in a 3D optical lattice. Our scheme uses specific motionally excited band states to form an orbital subspace immune to band relaxation. A laser dressing is applied

Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning

September 24, 2021
Author(s)
MATTHEW SIMONS, Aly Artusio-Glimpse, chris holloway, Eric Imhof, Steven Jefferts, Robert Wyllie, Brian Sawyer, Thad Walker
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio-frequency (RF) fields. Resonant detection of RF fields by electromagnetically induced transparency and Autler-Townes (AT) splitting in Rydberg

Progress towards comparison of quantum and classical vacuum standards

September 22, 2021
Author(s)
Daniel Barker, Nikolai Klimov, Eite Tiesinga, James A. Fedchak, Julia Scherschligt, Stephen Eckel
We present our progress towards a comparison of NIST's cold atom primary vacuum standard and a dynamic expansion vacuum standard. The cold atom vacuum standard (CAVS) converts the loss rate of atoms from a magnetic trap to a vacuum pressure using ab initio
Displaying 251 - 275 of 672
Was this page helpful?