NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Surface science motivated by heating of trapped ions from the quantum ground state
Published
Author(s)
Dustin Hite, Kyle McKay, David P. Pappas
Abstract
For the past two and a half decades, anomalous heating of trapped ions from nearby electrode surfaces has continued to demonstrate unexpected results. Caused by electric-field noise, this heating of the ions' motional modes remains an obstacle for scalable quantum computation with trapped ions. One of the anomalous features of this electric-field noise is the reported nonmonotonic behavior in the heating rate when a trap is incrementally cleaned by ion bombardment. Motivated by this result, the present work reports on a surface analysis of a sample ion-trap electrode treated similarly with incremental doses of Ar+ ion bombardment. Kelvin probe force microscopy and x-ray photoelectron spectroscopy were used to investigate how the work functions on the electrode surface vary depending on the residual contaminant coverage between each treatment. It is shown that the as-fabricated Au electrode is covered with a hydrocarbon film that is modified after the first treatment, resulting in work functions and core-level binding energies that resemble that of atomic-like carbon on Au. Changes in the spatial distribution of work functions with each treatment, combined with a suggested phenomenological coverage and surface-potential roughness dependence to the heating, appear to be related to the nonmonotonic behavior previously reported.
Hite, D.
, McKay, K.
and Pappas, D.
(2021),
Surface science motivated by heating of trapped ions from the quantum ground state, New Journal of Physics, [online], https://doi.org/10.1088/1367-2630/ac2c2c, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932234
(Accessed October 20, 2025)