Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1801 - 1825 of 2915

Calculation of the Electron Self Energy for Low Nuclear Charge

January 1, 1999
Author(s)
U Jentschura, Peter J. Mohr, G Soff
We present a nonperturbative numerical evaluation of the one-photon electron self-energy for hydrogen like ions with low nuclear charge numbers Z = 1 to 5. Our calculation for 1S state has a numerical uncertainty of 0.8 Hz for hydrogen and 13 Hz for singly

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

New Standards Working Group on Semantic Maps and More to Come!

September 30, 2022
Author(s)
Jaeho Lee, Craig I. Schlenoff
The Robotics and Automation Society's (RAS) standards working groups continue to grow. Our current working groups are pursuing standards and guidelines in the following areas. - Autonomous Robots - Ethically Driven Nudging for Robotic, Intelligent and

Quantum-enhanced interferometry with large heralded photon-number states

June 14, 2020
Author(s)
G Thekkadath, M.E. Mycroft, B.A. Bell, C.G. Wade, A. Eckstein, David Phillips, R.B Patel, A. Buraczewski, Adriana Lita, Thomas Gerrits, Sae Woo Nam, M. Stobinska, A.I. Lvovsky, Ian Walmsley
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a sqrt(N) enhancement in phase sensitivity compared to a

Ultrafast optically induced spin transfer in ferromagnetic alloys

January 17, 2020
Author(s)
Moritz Hofherr, Soren Hauser, J. K. Dewhurst, Phoebe Tengdin, S Sakshath, Hans Nembach, Tobias Weber, Justin Shaw, Thomas J. Silva, H C. Kapteyn, M Cinchetti, B Rethfeld, M M. Murnane, D Steil, B Stadtmuller, S Sharma, Martin Aeschlimann, S Mathias
The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all

Transport properties of topologically non-trivial bismuth tellurobromides BinTeBr

September 9, 2019
Author(s)
Falk Pabst, Dean Hobbis, Alzahrani Noha, Hsin Wang, I.P. Rusinov, E.V. Chulkov, Joshua B. Martin, Michael Ruck, George S. Nolas
Temperature dependent transport properties of the recently discovered layered bismuth-rich tellurobromides BinTeBr (n = 2, 3) are investigated for the first time. Dense homogeneous polycrystalline specimens prepared for different electrical and thermal

Structural, chemical, electrical and thermal properties of n-type NbFeSb

January 26, 2019
Author(s)
Dean Hobbis, Raphael P. Hermann, Hsin Wang, David S. Parker, Tribhuwan Pandey, Joshua B. Martin, Katharine L. Page, George S. Nolas
We report on the structural, chemical, electrical and thermal properties of n-type polycrystalline NbFeSb synthesized by induction melting of the elements. Although several studies on p-type conduction of this half-Heusler composition have recently been

Helical Magnetism in Sr-Doped CaMn 7 O 12 Films

December 19, 2018
Author(s)
Amanda Huon, Anuradha M. Vibhakar, Alexander Grutter, Julie Borchers, Steven Disseler, Yaohua Liu, Wei Tian, Fabio Orlandi, Pascal Manuel, Dmitry D. Khalyavin, Yogesh Sharma, Andreas Herklotz, Ho Nyung Lee, Michael R. Fitzsimmons, Roger D. Johnson, Steven J. May
Noncollinear magnetism can play an important role in multiferroic materials but is relatively understudied in oxide heterostructures compared to their bulk counterparts. Using magnetometry and neutron diffraction, we demonstrate the presence of helical

Spatial Dimensions in Atomic Force Microscopy: Instruments, Effects, and Measurements

August 15, 2018
Author(s)
Ronald G. Dixson, Ndubuisi G. Orji, Ichiko Misumi, Gaoliang Dai
Atomic force microscopes (AFMs) are commonly and broadly regarded as being capable of three dimensional imaging. However, conventional AFMs suffer from both significant functional constraints and imaging artifacts that render them less than fully three

Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes

June 7, 2016
Author(s)
Eric J. Ching, C. T. Avedisian, Richard E. Cavicchi, Do H. Chung, Jeff Rah, Michael J. Carrier
The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol,n-heptane) on stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the membranes for times ranging from 1 υs to 10 υs. The

NIST Big Data Interoperability Framework: Volume 2, Big Data Taxonomies

October 22, 2015
Author(s)
Wo L. Chang, Nancy Grady, Community Resilience Program NIST
Big Data is a term used to describe the large amount of data in the networked, digitized, sensor- laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is

Probing electric field control of magnetism using ferromagnetic resonance

January 29, 2015
Author(s)
Ziyao Zhou, Morgan Trassin, Ya Gao, Yuan Gao, Diana Qiu, Khalid Ashraf, Tianxiang Nan, Xi Yang, Samuel R. Bowden, Daniel T. Pierce, Mark D. Stiles, John Unguris, Ming Liu, Brandon Howe, Gail Brown, Sayeef Salahuddin, Ramamoorthy Ramesh, Nian Sun
A question of fundamental importance in multiferroic materials, such as BiFeO3, is whether the canted moment arising from the Dzyalozhinski-Moriya coupling is switchable with the application of an electric field. Since this canted moment is weak, directly

Development of Standard Reference Materials for Cement-Based Materials

January 6, 2014
Author(s)
Chiara F. Ferraris, Nicos Martys, William L. George
Rotational rheometers are routinely used for homogeneous materials, but their usage for characterization of a granular fluid like concrete is a relatively new phenomenon. As measurements with rheometers can involve flow in a complex geometry, it is
Displaying 1801 - 1825 of 2915
Was this page helpful?