NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Structural, chemical, electrical and thermal properties of n-type NbFeSb
Published
Author(s)
Dean Hobbis, Raphael P. Hermann, Hsin Wang, David S. Parker, Tribhuwan Pandey, Joshua B. Martin, Katharine L. Page, George S. Nolas
Abstract
We report on the structural, chemical, electrical and thermal properties of n-type polycrystalline NbFeSb synthesized by induction melting of the elements. Although several studies on p-type conduction of this half-Heusler composition have recently been reported, including reports of relatively high thermoelectric properties, very little has been reported on the transport properties of n-type compositions. We combine transport property investigations together with short- and long-range structural data obtained by Mössbauer spectroscopy of iron-57 and antimony-121 and by neutron total scattering, as well as first principles calculations, in investigating the intrinsic properties of this material. This work is intended to provide a greater understanding of the fundamental properties of NbFeSb as this material continues to be of interest for potential thermoelectric applications.
Hobbis, D.
, Hermann, R.
, Wang, H.
, Parker, D.
, Pandey, T.
, Martin, J.
, Page, K.
and Nolas, G.
(2019),
Structural, chemical, electrical and thermal properties of n-type NbFeSb, Inorganic Chemistry, [online], https://doi.org/10.1021/acs.inorgchem.8b02531
(Accessed October 10, 2025)