Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Electric- field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments



E. Kim, A Safavi-Naini, Kyle S. McKay, David P. Pappas, P.F Weck, H.R. Sadeghpour, Dustin A. Hite


The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric- field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.
Physical Review A (Atomic, Molecular and Optical Physics)
Created March 9, 2017, Updated March 13, 2017