Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 26 - 50 of 797

Detection of individual spin species via frequency-modulated charge pumping

February 2, 2022
James Ashton, Mark Anders, Jason Ryan
We utilize the recently developed frequency-modulated charge pumping technique to detect a single charge per cycle, which strongly suggests a single Si/SiO2 interface trap. This demonstration in sub-micron MOSFETs, in which scaling of the gate oxide yields

Model for the Bipolar Amplification Effect

December 10, 2021
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface

Computational scanning tunneling microscope image database

December 5, 2021
Kamal Choudhary, Kevin Garrity, Charles Camp, Sergei Kalinin, Rama Vasudevan, Maxim Ziatdinov, Francesca Tavazza
We introduce the systematic database of scanning tunneling microscope (STM) images obtained using density functional theory (DFT) for two-dimensional (2D) materials, calculated using the Tersoff-Hamann method. It currently contains data for 716 exfoliable

Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook

November 30, 2021
Tom Vincent, Jiayun liang, simrjit singh, eli castanon, xiaotian zhang, deep jariwala, olga kazakova, zakaria al-balushi, Amber McCreary
The interest in two-dimensional and layered materials continues to expand, driven by the compelling properties of individual atomic layers that can be stacked and/or twisted into synthetic heterostructures. The plethora of electronic properties as well as

Generation of perfect vortex beams by dielectric geometric metasurface for visible light

October 31, 2021
Qianwei Zhou, Mingze Liu, Wenqi Zhu, Lu Chen, Yongze Ren, Henri Lezec, Yanqing Lu, Ting Xu, Amit Agrawal
Perfect vortex beam (PVB) is a propagating optical field carrying orbital angular momentum (OAM) with a radial intensity profile that is independent of topological charge. PVB can be generated through the Fourier transform of a Bessel-Gaussian beam, which

Spatially Resolved Potential and Li-Ion Distributions Reveal Performance-Limiting Regions in Solid-State Batteries

October 19, 2021
Elliot Fuller, Evgheni Strelcov, Jamie Weaver, Michael Swift, Joshua Sugar, Andrei Kolmakov, Nikolai Zhitenev, Jabez J. McClelland, Yue Qi, Joseph Dura, Alec Talin
The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte–electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force

Thermal Analysis of Nanoparticles: Methods, Kinetics, and Recent Advances

October 13, 2021
Elisabeth Mansfield, Mark Banash
This chapter provides an overview of the thermal techniques available to study nanoparticles, with particular attention to thermogravimetric analysis, calorimetry and differential scanning calorimetry. The advantages of thermal analysis for nanoparticle

Microwave characterization of graphene inks

October 11, 2021
Jan Obrzut, Ana C. M. Moraes
Systematic charge transport characterization of solution-processed graphene inks using ethyl cellulose polymer as a binder/stabilizer, showed graphene patterns with high mobility ( 160 cm2 V-1 s-1), low energy gap, thermally activated charge transport and

Parametric optimization of an air-liquid interface system for flow through inhalation exposure to nanoparticles: assessing dosimetry and intracellular uptake of CeO2 nanoparticles

September 29, 2021
Lars Leibrock, Harald Jungnickel, Jutta Tentschert, Aaron Katz, Blaza Toman, Elijah Petersen, Frank Bierkandt, Ajay V. Singh, Peter Laux, Andreas Luch
Air-liquid interface (ALI) systems have been widely used in recent years to investigate the inhalation toxicity of many gaseous compounds, chemicals, and nanomaterials and represent an emerging and promising in vitro method to supplement or ultimately

Alternatives to aluminum gates for silicon quantum devices: Defects and strain

September 15, 2021
Ryan Stein, Zachary Barcikowski, Sujitra Pookpanratana, Joshua M. Pomeroy, Michael Stewart
Gate-defined quantum dots (QD) benefit from the use of small grain size metals for gates materials because it aids in shrinking the device dimensions. However, it is not clear what differences arise with respect to process-induced defect densities and

Single-photon detection in the mid-infrared up to 10 micron wavelength using tungsten silicide superconducting nanowire detectors

September 14, 2021
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 um. These detectors are promising for applications in the mid-infrared

Nanopore sensing: a physical-chemical approach

September 1, 2021
Joseph W. Robertson, Madhav Ghimire, Joseph Reiner
Protein nanopores have emerged as an important class of sensor, for the understanding of biophysical processes, such as molecular transport across membranes, and detection and characterization of biopolymers. We trace the development of these sensors from

Mutual control of stochastic switching for two electrically coupled superparamagnetic tunnel junctions

August 19, 2021
Philippe Talatchian, Matthew Daniels, Advait Madhavan, Matthew Pufall, Emilie Jue, William Rippard, Jabez J. McClelland, Mark Stiles
Superparamagnetic tunnel junctions (SMTJs) are promising sources for the randomness required by some compact and energy-efficient computing schemes. Coupling them gives rise to collective behavior that could be useful for cognitive computing. We use a

Near-Infrared Emitting Dual-Stimuli-Responsive Carbon Dots from Endogenous Bile Pigments

August 12, 2021
Parinaz Fathi, Parikshit Moitra, Madeleine M. McDonald, Mandy Esch, Dipanjan Pan
Careful selection of carbon dot precursors and surface modification techniques has allowed for the development of carbon dots with strong near-infrared fluorescence emission. However, the rational selection of tetrapyrrolic carbon dot precursors to obtain

A System for Validating Resistive Neural Network Prototypes

July 27, 2021
Brian Hoskins, Mitchell Fream, Matthew Daniels, Jonathan Goodwill, Advait Madhavan, Jabez J. McClelland, Osama Yousuf, Gina C. Adam, Wen Ma, Muqing Liu, Rasmus Madsen, Martin Lueker-Boden
Building prototypes of heterogeneous hardware systems based on emerging electronic, magnetic, and photonic devices is an increasingly important area of research. On the face of it, the novel implementation of these systems, especially for online learning

Quantifying Mechanical Abrasion of MWCNT Nanocomposites used in 3D Printing: Influence of CNT content on abrasion products and rate of microplastic production

July 15, 2021
Nathan Bossa, Sipe M. Joana, Alan Kennedy, Treye Thomas, Christine O. Hendren, Mark R. Wiesner, Keana Scott, William Berger
Manufactured nanomaterials (MNMs) are incorporated as "nanofillers" into consumer products to enhance properties of interest. Multiwalled carbon nanotubes (MWCNTs) are known for their unique properties and have many applications in polymers. However, the

Plasmonic Sensing Studies of a Gas-Phase Cystic Fibrosis Marker in Moisture Laden Air

May 29, 2021
Libin Sun, Drew Hall, Douglas Conrad, Kurt D. Benkstein, Stephen Semancik, Mona Zaghloul
A plasmonic sensing platform was developed as a noninvasive method to monitor gas-phase biomarkers related to cystic fibrosis (CF). The nanohole array (NHA) sensing platform is based on localized surface plasmon resonance (LSPR) and offers a rapid data
Displaying 26 - 50 of 797