NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Robert D. Chirico, Andrei F. Kazakov, William V. Steele
Measurements leading to the calculation of thermodynamic properties in the ideal-gas state for 1- phenylnaphthalene (Chemical Abstracts registry number [605-02-7]) and 2-phenylnaphthalene (Chemical Abstracts registry number [612-94-2]) are reported
Michael D. Frenkel, Robert D. Chirico, Vladimir Diky, Kenneth Kroenlein, Chris Muzny, Andrei F. Kazakov, Joe W. Magee, Ilmutdin M. Abdulagatov, Eric Lemmon
The ThermoData Engine is a software expert systems implementing the concept of dynamic data evaluation. This new release includes four important new features. (1) Implementation of the Peng-Robinson EOS for mixtures. (2) Evaluation of ideal-gas entropies
Vladimir Diky, Sergey Verevkin, Vladimir Emel?yanenko, Olga Dorofeeva
Enthalpy of combustion of highly pure nitromethane and nitrobenzene have been measured with the precise combustion calorimetry. Enthalpies of vaporization for both compounds were collected and evaluated. New internally consistent experimental data set of
Vladimir Diky, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Joe W. Magee, Ilmutdin M. Abdulagatov, Michael D. Frenkel
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present article describes the background and implementation for new additions in latest release of TDE. Advances
William P. Krekelberg, Vincent K. Shen, Daniel W. Siderius, Thomas M. Truskett, Jeffrey R. Errington
We investigate the structural and diffusive dynamics properties of a model fluid in highly-absorptive cylindrical pores. At subcritical temperatures, self diffusion displays three distinct regimes as a function of average pore density ρ: 1) a decrease in
Vladimir Diky, Sergey Verevkin, Vladimir Emel?yanenko, Olga Dorofeeva
Enthalpy of combustion of highly pure nitromethane and nitrobenzene have been measured with the precise combustion calorimetry. Enthalpies of vaporization for both compounds were collected and evaluated. New internally consistent experimental data set of
Robert D. Chirico, Michael D. Frenkel, Joe W. Magee, Vladimir Diky, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Ilmutdin M. Abdulagatov, William E. Acree, Jr., Joan F. Brennecke, Paul L. Brown, Peter T. Cummings, Theodoor W. de Loos, Daniel G. Friend, Anthony R. Goodwin, Lee D. Hansen, William M. Haynes, Nobuyoshi Koga, Andreas Mandelis, K N. Marsh, Paul M. Mathias, Clare McCabe, O'Connell J. P., Agilio Padua, Vicente Rives, Christoph Schick, Martin P. Trusler, Sergey Vyazovkin, Ron D. Weir, Jiangtao Wu
This article describes a 10-year cooperative effort between the U. S. National Institute of Standards and Technology (NIST) and five major journals in the field of thermophysical and thermochemical properties to improve the quality of published reports of
Michael D. Frenkel, Sergey P. Verevkin, V N. Emel'yanenko, Robert D. Chirico, Vladimir Diky, Chris D. Muzny
A new group-contribution approach involving systematic corrections for 1,4-non-bonded carbon-carbon and carbon-oxygen interactions has been proposed. Limits of the applicability of the method, associated with the highly branched structures, were
Mark O. McLinden, Andrei F. Kazakov, J. Steven Brown, Piotr A. Domanski
We explore the possibilities for refrigerants having low global warming potential (GWP) by use of two distinct approaches. In a companion paper (Domanski et al., 2013) we evaluate the effect of a refrigerants fundamental thermodynamic parameters on its
This is a new release of the NIST Standard Reference Database 23, commonly known as REFPROP. Enhancements have been made to most areas of the NIST REFPROP program, including the graphical interface, the Excel spreadsheet, the FORTRAN files (i.e., core
We use the path-integral Monte Carlo technique and a recent high-accuracy six-dimensional potential to compute the cross second virial coefficients for all unlike pairs among the hydrogen isotopologues H2, D2, T2, HD, HT, and DT. Values are calculated from
The article provides overview of the systems and software tools designed for global validation of the experimental data in the field of thermodynamics, and experimental data-driven technologies for thermophysical property prediction developed recently at
We present grand canonical transition-matrix Monte Carlo (GC-TMMC) as an efficient method for simulating gas adsorption processes, with particular emphasis on subcritical gas adsorption in which capillary phase transitions are present. As in other
Presentation at 2013 Winter Annual Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Dallas, Texas, January 27, 2013. The importance of fluid properties for heat transfer analysis in refrigeration
Robert N. Goldberg, Manuel A. Ribeiro da Silva, Maria D. Ribeiro da Silva, Ana I. Lobo Ferreira, Quan Shi, Brian F. Woodfield
The thermochemistry of alpha-D-xylose(cr) was studied by means of oxygen bomb calorimetry and a Physical Property Measurement System (PPMS) in zero magnetic field. The sample of -D-xylose(cr) used in this study was one well-characterized by HPLC, Karl
Vladimir Diky, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Joe W. Magee, Ilmutdin M. Abdulagatov, Carlos A. Diaz-Tovar, Jeong W. Kang, Rafiqul Gani, Michael D. Frenkel
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for
Eduard Rocas, Carlos Collado, Robert Aigner, Jordi Mateu, A Hueltes, James Booth
We present a methodology to characterize BAW resonators both linearly and nonlinearly. The procedure uses physical modeling along with measurements that exploit different manifestations of the nonlinear phenomena to identify the dominant linear and
Andrea Comandini, Iftikhar A. Awan, Jeffrey A. Manion
Complementary shock-tube studies at the National Institute of Standards and Technology (NIST) and the University of Illinois at Chicago (UIC) have been used to examine the decomposition reactions of the 1-pentyl radical at temperatures of 833 K to 1130 K
Michal Fulem, Kvetoslav Ruzicka, Marisa A. Rocha, Luis M.N.B.F. Santos, Robert F. Berg
Recommended vapor pressure data for ferrocene (CAS Registry Number: 102-54-5) in the temperature range from 242 to 447 K were developed by the simultaneous correlation of critically assessed vapor pressures, heat capacities of the crystalline phase and the
Thomas J. Bruno, Tara J. Fortin, Tara M. Lovestead, Jason A. Widegren
The complex nature of finished fuels makes definitive studies on composition and combustion properties very difficult and uncertain. This has led to the adoption of fuel surrogate mixtures in such studies. The development of a surrogate mixture is itself a
The isomerization and decomposition reactions of 2-pentyl and 3-pentyl radicals have been studied in a single-pulse shock tube over a temperature range of 973 K to 1121 K and pressures of 120 kPa to 800 kPa. The results represent the first direct study of