An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Junhui Shi, Terrence Wong, Yun He, Lei Li, Ruiying Zhang, Christopher Yung, Jeeseong C. Hwang, Lihong Wang
Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong
Bruce D. Ravel, Daniel E. Crean, Daniel J. Bailey, M. C. Stennett, Claire L. Corkhill, Ryan Tappero, N. C. Hyatt
Trinitite, the explosive melt glass derived from the Trinity nuclear test, is of interest as a model material for nuclear forensics investigation. However, there remains uncertainty as to the mechanism of trinitite formation. In this study, new insight is
Joshua A. Gordon, Christopher L. Holloway, Matthew T. Simons, Abdulaziz H. Haddab
Rydberg atoms have been used for measuring radio-frequency (RF) electric (E)-fields due to their strong dipole moments over the frequency range of 500 MHz-1 THz. For this, electromagnetically induced transparency (EIT) within the Autler-Townes (AT) regime
Sarthak Subhankar, Alessandro Restelli, Yang Wang, Steve Rolston, James V. Porto
We present a compact, cost-effective, and all-digital implementation of a scanning transfer cavity lock (STCL) for long term laser frequency stabilization. An interrupt-based, event-centric state machine is employed to realize the STCL, with the capability
Esther Baumann, Edgar Perez, Gabriel M. Colacion, Fabrizio Giorgetta, Kevin Cossel, Gabriel Ycas, David Carlson, Kartik Srinivasan, Scott Papp, Ian Coddington, Nathan R. Newbury
Spectral broadening of compact robust Er+: fiber combs is demonstrated with tailored Si3N4 waveguides to obtain spectrally-smooth broadened light in the 2 μm 2.5 μm atmospheric water window for gas spectroscopy. This successfully extends the Er+ spectrum
Wei-Chang Yang, Canhui Wang, Lisa A. Fredin, Pin A. Lin, Lisa Shimomoto, Henri Lezec, Renu Sharma
Recent reports of hot-electron-induced dissociation of small molecules, such as hydrogen, demonstrate the potential of using plasmonic nanostructures to convert light into chemical energy for low temperature catalytic reactions1. Theories have typically
Christine G. Pappas, Malcolm S. Durkin, Joseph W. Fowler, Kelsey M. Morgan, Joel N. Ullom, William B. Doriese, Gene C. Hilton, Galen C. O'Neil, Daniel R. Schmidt, Paul Szypryt, Daniel S. Swetz
The Non-destructive Statistical Estimation of Nanoscale Structures and Electronics NSENSE instrument for IARPAs Rapid Analysis of Various Emerging Nanoelectronics RAVEN program is a tabletop X-ray tomography prototype designed for three-dimensional imaging
Malcolm S. Durkin, Joseph S. Adams, Simon R. Bandler, James A. Chervenak, Saptarshi Chaudhuri, Carl S. Dawson, Edward V. Denison, William B. Doriese, Shannon M. Duff, F. M. Finkbeiner, C. T. FitzGerald, Joseph W. Fowler, Johnathon D. Gard, Gene C. Hilton, Kent D. Irwin, Young I. Joe, R. L. Kelley, Caroline A. Kilbourne, A. R. Miniussi, Kelsey M. Morgan, Galen C. O'Neil, Christine G. Pappas, F. S. Porter, Carl D. Reintsema, David A. Rudman, Kazuhiro Sakai, Stephen J. Smith, Robert W. Stevens, Daniel S. Swetz, Paul Szypryt, Joel N. Ullom, Leila R. Vale, N. Wakeham, Joel C. Weber, B. A. Young
Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for european space agency's Athena satellite mission
Amber D. McCreary, Qi An, Aaron M. Forster, Kunwei Liu, Siyao He, Chris Macosko, Andreas Stein, Angela R. Hight Walker
The incorporation of nanofillers, such as graphene oxide (GO) into fiber reinforced polymer composites to improve their mechanical properties is a significant research area for a variety of industrial applications. However, to date there is no reliable
We describe a real-time data processing and frequency control method to track peaks in optically detected magnetic resonance of nitrogen-vacancy centers in diamond. This procedure allows us to measure magnetic field continuously with sensitivity ≈ 6 µT/Hz1
Gabriel Ycas, Fabrizio Giorgetta, Kevin Cossel, Eleanor M. Waxman, Esther Baumann, Nathan R. Newbury, Ian Coddington
Open-path measurements of atmospheric gas species in the air, including volatile organic compounds, are essential to quantify emissions from sources like oil and gas, forest fires, and industry. Here, we extend open-path dual-comb spectroscopy to probe the
Duane J. McCrory, Mark Anders, Jason Ryan, Pragya Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason Campbell
We report on a novel electron paramagnetic resonance (EPR) technique that merges electrically detected magnetic resonance (EDMR) with a conventional semiconductor wafer probing station. This union, which we refer to as wafer-level EDMR (WL-EDMR), allows
Daniel I. Herman, Eleanor M. Waxman, Gabriel G. Ycas, Fabrizio R. Giorgetta, Nathan R. Newbury, Ian R. Coddington
We combine high-resolution mid-infrared dual-comb spectroscopy with attenuated total reflectance measurements to provide in-situ monitoring of a chemical reaction. The mid-infrared dual-comb spectrometer measures quantitative absorption cross-sections of