An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In this chapter we have discussed the QKD protocol and its potential to secure video surveillance applications. We have shown examples of a QKD implementation along with reference to other implementations. We have also shown some innovations that can
The use of trapped atomic ions in the field of quantum information processing is briefly reviewed. We summarize the basic mechanisms required for logic gates and the use of the gates in demonstrating simple algorithms. We discuss the potential of trapped
Alan L. Migdall, Sergey V. Polyakov, Marco Genovese, Fabrizio Piacentini, I. Ruo Berchera, Ivo P. Degiovanni, Giorgio Brida
We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programmable
Jun Chen, Zachary H. Levine, Jingyun Fan, Alan L. Migdall
We present a quantum-mechanical theory to describe narrow-band photon- pair generation via four-wave mixing in a Silicon-on-Insulator (SOI) micro- resonator. We also provide design principles for efficient photon-pair generation in an SOI micro-resonator
William D. Phillips, Yu-Ju Lin, Robert L. Compton, Karina K. Jimenez Garcia, Abigail R. Perry, James V. Porto, Ian B. Spielman
We use Raman coupling between magnetic sublevels of a 87Rb Bose-Einstein condensate (BEC) to create an effective vector gauge field for the neutral atoms. They behave as if they were charged particles in a magnetic vector potential. With appropriate
Ian B. Spielman, Nathan Goldman, Indubala I. Satija, Predrag Nikolic, Alejandro Bermudez, Miguel A. Martin-Delgado, Maciej Lewenstein
Topological insulators are a broad class of unconventional states that respect all symmetries of the system, but have non-trivial transport and topological properties which cannot be defined locally. Until recently, all known realizations of these phases
Thomas Gerrits, Burm Baek, Martin J. Stevens, Brice R. Calkins, Adriana E. Lita, Scott C. Glancy, Emanuel H. Knill, Sae Woo Nam, Richard P. Mirin, Robert Hadfield, Ryan Bennink, Warren Grice, Sander N. Dorenbos, Tony Zijlstra, Teun Klapwijk, Val Zwiller
Pure optical squeezing in a single mode is highly desirable for quantum information applications such as continuous variable quantum computing and the generation of optical Schrödinger cat states. To generate optical cat states, photons are subtracted from
Daniel R. Schmidt, Hsiao-Mei Cho, Johannes Hubmayr, Peter J. Lowell, Michael D. Niemack, Galen C. O'Neil, Joel N. Ullom, Ki W. Yoon, Kent D. Irwin
Superconducting transition edge sensors (TES) require superconducting films with transition temperatures (Tc)and properties that can be tailored to the particular requirements of individual applications. We have been developing Al-Mn films with a tunable
Daniel R. Schmidt, Hsiao-Mei Cho, Johannes Hubmayr, Peter J. Lowell, Michael D. Niemack, Galen C. O'Neil, Joel N. Ullom, Ki W. Yoon, Kent D. Irwin, W L. Holzapfel, M Lueker, E M. George, E Shirokoff
Superconducting transition edge sensors (TES) require superconducting films with transition temperatures (Tc)and properties that can be tailored to the particular requirements of individual applications. We have been developing Al-Mn films with a tunable
Samuel P. Benz, Paul D. Dresselhaus, Charles J. Burroughs
We have developed a quantum voltage noise source (QVNS) based on pulse-driven Josephson arrays and optimized its waveform synthesis for use with Johnson noise thermometry (JNT). The QVNS synthesizes multitone waveforms with equal amplitude harmonic tones
David S. Wisbey, Jiansong Gao, Fabio C. da Silva, Jeffrey S. Kline, Michael Vissers, David P. Pappas, Leila R. Vale
Microscopic two-level systems (TLSs) are known to contribute to loss in resonant superconducting microwave circuits. This loss increases at low power and temperatures as the TLSs become unsaturated. We find that the loss is dependent on both the substrate
We have demonstrated an ultra low noise up-conversion single photon detector using a periodically poled lithium niobate waveguide. The dark count rate of this detector is lower than 100 counts/second with 10% detection efficiency.
Steven M. Olmschenk, Radu S. Chicireanu, Karl D. Nelson, James V. Porto
We perform randomized benchmarking on neutral atomic quantum bits (qubits) confined in an optical lattice. Single qubit gates are implemented using microwaves, resulting in a measured error per randomized computational gate of 1.4(1) x 10−4 that is
Giorgio Brida, Ivo P. Degiovanni, V Schettini, Sergey Polyakov, Alan L. Migdall
We have presented a scheme to allow photon counting at higher rates than is otherwise possible with existing photon-counting detectors and detection systems. This is done by multiplexing a pool of detectors in a way that greatly suppresses the effect of
Both discrete and continuous signals are used to carry classical information. Analogously, discrete and continuous systems can be used to encode quantum information. Most quantum computation schemes propose enconding qubits using two level systems, such a
Chin-Wen Chou, David Hume, Till P. Rosenband, David J. Wineland
Albert Einstein's theory of relativity forced us to alter our concepts of reality. One of the more startling outcomes of the theory is that we have to give up our notions of simultaneity. This is manifest in the so-called twin paradox in which a twin
The Cooper pair transistor (CPT) is a superconducting electrometer that has applications in quantum information as well as fundamental superconductivity studies. Since it operates in a near-dissipationless mode, it has potential as a minimally invasive
Fabio Altomare, Katarina Cicak, Mika A. Sillanpaa, Michael S. Allman, Dale Li, Adam J. Sirois, Joshua Strong, Jae Park, Jed D. Whittaker, Raymond W. Simmonds
We investigate measurement crosstalk in a system with two flux-biased phase qubits coupled by a resonant coplanar waveguide cavity. After qubit measurement, the superconducting phase undergoes damped oscillations in a deep anharmonic potential producing a
Dale Li, Fabio C. Da Silva, Danielle Braje, Raymond W. Simmonds, David P. Pappas
We demonstrate a remote sensing design of phase qubits by separating the control and readout circuits from the qubit loop. This design improves measurement reliability because the control readout chip can be fabricated using more robust materials and can
Douglas A. Bennett, Robert D. Horansky, Daniel R. Schmidt, Daniel S. Swetz, Leila R. Vale, Joel N. Ullom, Andrew Hoover, Michael W. Rabin, Nathan J. Hoteling
High resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct
Thomas Gerrits, Scott C. Glancy, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron Miller, Aaron J. Miller, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin, Emanuel H. Knill
We have created heralded coherent-state superpositions (CSSs) by subtracting up to three photons from a pulse of squeezed vacuum light. To produce such CSSs at a sufficient rate, we used our high-efficiency photon-number-resolving transition edge sensor to
We propose a new method to narrow the linewidth of photon pairs generated from spontaneous parametric down conversion (SPDC). The single structure device incorporates an internal Bragg grating onto a nonlinear optical waveguide. We study theoretically the