An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We examine an all-optical atomic-polarization-gate scheme using a polarization-selective Kerr phase-shift technique. Using a Kerr π-phase-shift technique, we selectively write a π phase shift to one of the circularly polarized components of a linearly
We present measurements of approximately 70 isolated, self-broadened, water vapor lines which are assigned to the (1,0,1)(0,0,0), (0,0,2)(0,0,0), (1,2,0)(0,0,0), and (2,0,0)(0,0,0) vibrational bands and which occur in the transparency window region
Lei Jiang, Eite Tiesinga, Xie-Ji Liu, Hui Hu, Han Pu
Motivated by recent experimental breakthroughs in generating spin-orbit coupling in ultracold Fermi gases using Raman laser beams, we present a systematic study of spin-orbit-coupled Fermi gases confined in a quasi-one-dimensional trap in the presence of
Przemek Bienias, Soonwon Choi, Ofer Firstenberg, Mohammad F. Maghrebi, Mikhail Lukin, Alexey Gorshkov, Hans Peter Buchler
We provide a rigorous framework describing a low-density gas of slow-light polaritons propagating in one dimension under the conditions of electromagnetically induced transparency and interacting via strong Rydberg-Rydberg interactions. Specifically, we
We use time-dependent density functional theory to examine the character of various resonances corresponding to peaks in the optical response of small metallic nanoparticles. Each resonance has both "sloshing" and "inversion" character. The sloshing mode
The electronic structure of singly ionized tin (Sn II) is partly a one-electron and partly a three-electron system with ground configuration 5s25p. The excited configurations are of the type 5s2nℓ in the one-electron part, and 5s5p2, 5p3 and 5s5pnℓ (nℓ =
We derive the ground-state energy for a small number of ultracold atoms in an isotropic harmonic trap using effective quantum field theory (EFT). Atoms are assumed to interact through pairwise energy-independent and energy-dependent delta-function
We propose and analyze a generalization of the Kitaev chain for fermions with long-range p-wave pairing, which decays with distance as a power-law with exponent $\alpha$. Using the integrability of the model, we demonstrate the existence of two types of
We describe protocols for passive atomic clocks based onquantum interrogation of the atoms. Unlike previous techniques, our protocols are adaptive and take advantage of prior information about the clock's state. To reduce deviations from an ideal clock
Khan W. Mahmud, Lei Jiang, Philip R. Johnson, Eite Tiesinga
We predict the existence of novel collapse and revival oscillations that are a distinctive signature of the short-range off-diagonal coherence associated with particle-hole pairs in Mott insulator states. Starting with an atomic Mott state in a one
Stephen Eckel, Fred Jendrzejewski, Avinash Kumar, Christopher J. Lobb, Gretchen K. Campbell
Weak connections between superconductors or superfluids differ from classical links due to quantum coherence, which allows flow without resistance. Transport properties through such weak links can be described with a single function, the current-phase
We investigate theoretically the effects of a dynamically increasing medium index on optical- wave propagation in a rubidium condensate. A long pulsed pump laser coupling a D2 line transition produces a rapidly growing internally generated field. This
Matthew N. Martin, Andrew J. Allen, Robert I. MacCuspie, Vincent A. Hackley
Little is understood about the impact coating molecules have on nanoparticle dissolution kinetics and intermediate agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles