Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

History of Quantum Hero Image

Atomic / molecular / quantum

News and Updates

Projects and Programs

Far-infrared Spectroscopy of Biomolecules (Archived)

Completed
We employ novel complimentary measurement and theoretical techniques to explore the low frequency intramolecular dynamics of model biological molecules including amino acids, short peptides with constrained structures, proteins with well-defined tertiary structures and DNAs. Our current efforts

Platform for Realizing Integrated Molecule Experiments (PRIME)

Ongoing
Blackbodies realize a clear relationship between radiated power and temperature through Planck’s law. While a reliable instrument for temperature and power calibrations, blackbodies are afflicted with a plethora of systematics (e.g., non-ideal emissivity, propagation loss, temperature gradients

Micro- and nano-optomechanical systems

Ongoing
Our primary current research direction involves the use of fabricated devices with sub-wavelength periodicity (photonic crystals) as optomechanical elements. Such structures enable a rich variety of devices, including mirrors, polarizers, and filters, in a configuration that couples naturally to

Hybrid Quantum Optomechanical Systems with Solid-State Artificial Atoms

Ongoing
Quantum Dot – Surface Acoustic Wave Microwave-to-Optical Transducers In this project, we focus on coupling nanoscale acoustic resonators with InAs quantum dot (QD) single photon sources (Fig. 1). At ultra-low temperatures, such as those in a dilution refrigerator, the acoustic resonators act as

The Research

Far-infrared Spectroscopy of Biomolecules (Archived)

Completed
We employ novel complimentary measurement and theoretical techniques to explore the low frequency intramolecular dynamics of model biological molecules including amino acids, short peptides with constrained structures, proteins with well-defined tertiary structures and DNAs. Our current efforts

Platform for Realizing Integrated Molecule Experiments (PRIME)

Ongoing
Blackbodies realize a clear relationship between radiated power and temperature through Planck’s law. While a reliable instrument for temperature and power calibrations, blackbodies are afflicted with a plethora of systematics (e.g., non-ideal emissivity, propagation loss, temperature gradients

Micro- and nano-optomechanical systems

Ongoing
Our primary current research direction involves the use of fabricated devices with sub-wavelength periodicity (photonic crystals) as optomechanical elements. Such structures enable a rich variety of devices, including mirrors, polarizers, and filters, in a configuration that couples naturally to

Hybrid Quantum Optomechanical Systems with Solid-State Artificial Atoms

Ongoing
Quantum Dot – Surface Acoustic Wave Microwave-to-Optical Transducers In this project, we focus on coupling nanoscale acoustic resonators with InAs quantum dot (QD) single photon sources (Fig. 1). At ultra-low temperatures, such as those in a dilution refrigerator, the acoustic resonators act as

Publications

Opportunities for Fundamental Physics Research with Radioactive Molecules

Author(s)
Michail Athanasakis-Kaklamanakis, Mia Au, Jochen Ballof, Robert Berger, Anastasia Borschevsky, Alexander Breier, Dmitry Budker, Luke Caldwell, Christopher Charles, Vincenzo Cirigliano, Jordy de Vries, David DeMille, Jacek Jacek Dobaczewski, Ch. E. Dullmann, Ephraim Eliav, Ephraim Eliav, Jonathan Engel, Mingyu Fan, Victor Flambaum, Alyssa Gaiser, Ronald Garcia Ruiz, Konstantin Gaul, Thomas Geisen, Alexander Gottberg, Gerald Gwinner, Reinhard Heinke, Steven Hoekstra, Jason Holt, Nicholas Hutzler, Andrew Jayich, Stephan Malbrunot-Ettenauer, Takayuki Miyagi, Iain Moore, Petr Navratil, Witold Nazarewicz, Gerda Neyens, Eric Norrgard, Nicholas Nusgart, Lukas Pasteka, Roy Ready, Moritz Pascal Reiter, Mikael Reponen, Sebastian Rothe, Marianna Safronova, Andrea Shindler, Jaideep Singh, Leonid Skripnikov, Silviu-Marian Udrescu, Shane Wilkins
Radioactive molecules hold great promise for their discovery potential in diverse fields. The extreme nuclear properties of heavy, short-lived nuclei and the

Few-electron highly charged muonic Ar atoms verified by electronic K xrays

Author(s)
Takuma Okumura, Toshiyuki Azuma, Douglas Bennett, W. Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Johnathon Gard, Tadashi Hashimoto, Ryota Hayakawa, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Daiji Kato, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Nao Kominato, Yasuhiro Miyake, Kelsey Morgan, Hirofumi Noda, Galen O'Neil, Shinji Okada, Kenichi Okutsu, Nancy Paul, Carl D. Reintsema, Toshiki Sato, Dan Schmidt, Kouichiro Shimomura, Patrick Strasser, Daniel Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Motonobu Tampo, Hideyuki Tatsuno, Tong Xiao-Min, Joel Ullom, Shin Watanabe, Shinya Yamada, Takuma Yamashita
Electronic K x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high

Awards