Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 101 - 125 of 2498

Design, modeling, and fabrication of high frequency Oersted lines for electron spin manipulation in silicon based quantum devices

October 25, 2024
Author(s)
Pradeep Namboodiri, Mark-yves Gaunin, Alessandro Restelli, Ranjit Kashid, Xiqiao Wang, Fan Fei, Brian Courts, FNU Utsav, Vijith Kamalon Pulikodan, Jonathan Wyrick, Richard M. Silver
Coherent manipulation of electron spins is one of the central problems of silicon-based quantum computing efforts. Electron spin resonance (ESR) lines, or Oersted lines, allow high frequency RF pulses to induce an electromagnetic field that drives Rabi

Long-lived topological time-crystalline order on a quantum processor

October 17, 2024
Author(s)
Liang Xiang, Wenjie Jiang, Zehang Bao, Zixuan Song, Shibo Xu, Ke Wang, Jiachen Chen, Feitong Jin, Xuhao Zhu, Zitian Zhu, Fanhao Shen, Ning Wang, Chuanyu Zhang, Yaozu Wu, Yiren Zou, Jiarun Zhong, Zhengyi Cui, Aosai Zhang, Ziqi Tan, Tingting Li, Yu Gao, Jinfeng Deng, Xu Zhang, Hang Dong, Pengfei Zhang, Si Jiang, Weikang Li, Zhide Lu, Zheng-Zhi Sun, Hekang Li, Zhen Wang, Chao Song, Alexey Gorshkov, Norman Yao, Thomas Iadecola, Fangli Liu, Zhexuan Gong, Francisco Machado, Qiujiang Guo, H. Wang, Dong-Ling Deng

Fast Ground State to Ground State Separation of Small Ion Crystals

October 10, 2024
Author(s)
Tyler Gugliemo, Dietrich Leibfried, Stephen Libby, Daniel Slichter
Rapid separation of linear crystals of trapped ions into different subsets is critical for realizing trapped ion quantum computing architectures where ions are rearranged in trap arrays to achieve all-to-all connectivity between qubits. We introduce a

Developing Interoperable, Accessible Software via the Atomic, Molecular, and Optical Sciences Gateway: A Case Study of the B-spline atomic R-Matrix code Graphical User Interface

October 3, 2024
Author(s)
Barry I. Schneider, kathryn hamilton, Sudhakar Pamidighantam, Tom Wolcott
The Atomic, Molecular, and Optical Science Gateway\citeamosgateway} is a comprehensive cyber\-infrastructure for research and educational activities in computational AMO science. The \hbox$B$-Spline} atomic \hbox$R$-Matrix} (BSR) suite of programs is

A network of cooler white dwarfs as infrared standards for flux calibration

October 1, 2024
Author(s)
Abbigail Elms, Nicola Gentile Fusillo, Pier-Emmanuel Tremblay, ralph bohlin, Mark Hollands, Snehalata Sahu, Mairi O'Brien, Susana Deustua, Tim Cunningham
The accurate flux calibration of observational data is vital for astrophysics and cosmology because absolute flux uncertainties of stellar standards propagate into scientific results. With the ever higher precision achieved by telescopic missions (e.g. JWS

Phase transition in magic with random quantum circuits

September 23, 2024
Author(s)
Michael Gullans
Maic is a resource that enables quantum computation and quantifies the efficacy of a quantum state for universal fault-tolerant quantum computing. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

September 16, 2024
Author(s)
Noah Schlossberger, Samuel Berweger, Nikunjkumar Prajapati, Andrew Rotunno, Alexandra Artusio-Glimpse, Matthew Simons, Abrar Sheikh, Eric Norrgard, Stephen Eckel, Christopher Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields. Over the

Linking excess entropy and acentric factor in spherical fluids

September 9, 2024
Author(s)
Tae Jun Yoon, Ian Bell
Introduced by Kenneth Pitzer in 1955, the acentric factor (ω) became a standard quantity in chemical thermodynamics, representing a molecule's "shape" effect on the deviation from the corresponding state behavior. Nevertheless, its interpretation remains

Calibration of Autler-Townes based electrometry in Rydberg states of alkali atoms

August 30, 2024
Author(s)
Noah Schlossberger, Nikunjkumar Prajapati, Alexandra Artusio-Glimpse, Samuel Berweger, Matthew Simons, William Watterson, Dangka Shylla, Christopher Holloway
Highly excited states of alkali atoms are a powerful tool for making SI-traceable electric field measurements without the need for an external reference. However, the calibration of these measurements suffers from ambiguity in which transition dipole

Assessing girth weld quality of pipeline steels and their susceptibility to hydrogen embrittlement

August 28, 2024
Author(s)
Zack Buck, Newell Moser, Nicholas Derimow, May Ling Martin, Damian Lauria, Enrico Lucon, Douglas Stalheim, Peter Bradley, Matthew Connolly
Hydrogen has long been considered a viable carbon-free option for ever-increasing societal desires to transform our energy infrastructure towards more renewable and alternative technologies. However, the effects of hydrogen-assisted damage mechanisms that

Wafer-scale fabrication of evacuated alkali vapor cells

August 28, 2024
Author(s)
Yang Li, Matthew Hummon, Susan Schima, John Kitching, DONGGYU SOHN
We describe a process for fabricating a wafer-scale array of alkali metal vapor cells with low residual gas pressure. We show that by etching long, thin channels between the cells on the Si wafer surface, the residual gas pressure in the evacuated vapor

Calibration for Astrophysics using an Artificial star with NIST-traceable Distribution of Luminous Energy (CANDLE) Instrument Development

August 23, 2024
Author(s)
Joseph P. Rice, Brian Alberding, Susana Deustua, Thinh Bui, Eric Shirley, Keshet Shavit, Eliad Peretz, Daniel Kuesters, Greg Aldering, Dmitry Vorobiev, Jonathan Papa, Justin Albert, Ralph Bohlin, Benjamin Rose, Piotr Pachowicz, Peter Plavchan, Angella Tanner, John Mather, Jean Thomas Landry, Etienne Gauvin, Thomas Michaud=Bayens, Greg Kopp
The CANDLE Engineering Demonstration Unit (EDU) was selected by the 2022 APRA program to develop and demonstrate that we can reach the flux accuracy and range required for an artificial star. A critical issue in producing accurate and reliable flux

Spectroscopy of laser cooling transitions in MgF

August 23, 2024
Author(s)
Nickolas Pilgram, Benjamin Baldwin, David La Mantia, Stephen Eckel, Eric Norrgard
We measure the complete set of transition frequencies necessary to laser cool and trap MgF molecules. Specifically, we report the frequency of multiple low $J$ transitions of the $X^2\Sigma^+(v^\prime\prime}=0,1) \rightarrow A^2\Pi_1⁄2(v^\prime=0)$, $X^2

Quantum Sensing with Erasure Qubits

August 19, 2024
Author(s)
Pradeep Niroula, Jack Dolde, Xin Zheng, Jacob Bringewatt, Adam Ehrenberg, Kevin Cox, Jeff Thompson, Michael Gullans, Shimon Kolkowitz, Alexey Gorshkov

Bilayer crystals of trapped ions for quantum information processing

August 16, 2024
Author(s)
Samarth Hawalder, Prakriti Shahi, Allison Carter, Ana Rey Ayala, John J. Bollinger, Athreya Shankar
Trapped ion systems are a leading platform for quantum information processing, but they are currently limited to 1D and 2D arrays, which imposes restrictions on both their scalability and their range of applications. Here, we propose a path to overcome

Quantum state tracking and control of a single molecular ion in a thermal environment

August 1, 2024
Author(s)
Yu Liu, Julian Schmidt, Zhimin Liu, David Leibrandt, Dietrich Leibfried, Chin-wen Chou
Understanding molecular state evolution is central to many disciplines, including molecular dynamics, precision measurement, and molecule-based quantum technology. Details of this evolution are obscured when observing a statistical ensemble of molecules

Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators

July 29, 2024
Author(s)
Panyu Hou, Jenny Wu, Stephen Erickson, Daniel Cole, Giorgio Zarantonello, Adam Brandt, Andrew C. Wilson, Daniel Slichter, Dietrich Leibfried
Precise quantum control and measurement of several harmonic oscillators, such as the modes of the electromagnetic field in a cavity or of mechanical motion, are key for their use as quantum platforms. The motional modes of trapped ions can be individually
Was this page helpful?