Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 1 - 25 of 42

Efficient Energy Transfer and Photoluminescence Enhancement in 2D MoS2/bulk InSe van der Waals Heterostructures

April 13, 2025
Author(s)
Michael Altvater, Christopher Stevens, Nicholas Pike, Joshua Hendrickson, Rahul Rao, Sergiy Krylyuk, Albert Davydov, Deep Jariwala, Ruth Patcher, Michael Snure, Nicholas Glavin
Heterostructures between 2D and 3D electron systems remain critically important in developing novel and efficient optoelectronic and electronic devices. In this study, a vertical heterojunction between monolayer MoS2 and bulk InSe was developed. This

Gated InAs quantum dots embedded in surface acoustic wave cavities for low-noise optomechanics

October 8, 2024
Author(s)
Zixuan Wang, Ryan DeCrescent, Poolad Imany, Joseph Bush, Sae Woo Nam, Richard Mirin, Kevin L. Silverman
Self-assembled InAs quantum dots (QDs) are promising optomechanical elements due to their excellent photonic properties and sensitivity to local strain fields. Microwave-frequency modulation of photons scattered from these efficient quantum emitters has

Synthesis and Size Dependence of Strongly Interacting Ferrite Nano-Objects: Implications for Magnetic Particle Imaging and Spatially Resolved Thermometry

September 25, 2024
Author(s)
Frank Abel, Eduardo De Lima Correa, Thinh Bui, Adam Biacchi, Michael J. Donahue, Mia Merritt, Jonathan Seppala, Solomon I. Woods, Angela Hight Walker, Cindi Dennis
High crystal quality nano-ferrites with short surface ligands (oleic acid) were recently shown to exhibit enhanced spatial resolution in magnetic particle imaging (MPI). Here, we develop a simple one-pot thermal decomposition approach to produce ferrite

Heart-on-a-Chip Systems: Disease Modeling and Drug Screening Applications

February 14, 2024
Author(s)
Derrick Butler, Darwin Reyes-Hernandez
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening has been performed using animal

Threshold and Laser Conversion in Nanostructured-Resonator Parametric Oscillators

January 10, 2024
Author(s)
Haixin Liu, Grant Brodnik, Jizhao Zang, David Carlson, Jennifer Black, Scott Papp
We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter

Scalable and robust beam shaping using apodized fish-bone grating couplers

November 20, 2023
Author(s)
Chad Ropp, Dhriti Maurya, Alexander Yulaev, Daron Westly, Gregory Simelgor, Vladimir Aksyuk
Efficient power coupling between guided and free-space optical modes requires precision spatial mode matching with apodized Bragg gratings. Yet, grating apodizations are often limited by the minimum feature size realizable by the fabrication approach

Long Range and Collective Impact of Au Surface Adatoms on Nanofin Growth

November 3, 2023
Author(s)
Babak Nikoobakht, Aaron Johnston-Peck, Jerry Tersoff
In the Au-catalyzed vapor-liquid-solid (VLS) growth of semiconductor nanowires, individual Au nanodroplets can result in single nanowires per site. However, growth of single nanofins per site using the same process becomes unpredictable. Our results show

Superconducting Nanowire Single-Photon Detector Arrays for the Near- to Mid-Infrared

October 31, 2023
Author(s)
Benedikt Hampel, Richard Mirin, Sae Woo Nam, Varun Verma
Superconducting Nanowire Single-Photon Detectors (SNSPDs) are excellent devices for the analysis of faint light from the ultraviolet to the mid-infrared. Recent developments push their broad wavelength bandwidth further into the mid-infrared towards 20 μm

Next-Generation Chip-Scale Atomic Clocks

October 16, 2023
Author(s)
John Kitching, Matthew Hummon, William McGehee, Ying-Ju Wang, Susan Schima
We describe work toward the development of next-generation chip-scale atomic clocks, which combine small size, low power consumption and manufacturability with high frequency stability. The use of optical transitions in microfabricated vapor cells improves

BABAR-ERI: Black Array of Broadband Absolute Radiometers - Earth Radiation Imager

September 22, 2023
Author(s)
Chris Yung, Cameron Straatsma, Nathan Tomlin, David Harber, Odele Coddington, John H. Lehman, Michelle Stephens
BABAR-ERI is being developed for a CubeSat capable of imaging the Earth's outgoing longwave radiation with a 1 km ground sample distance (GSD) using a push-broom imager. The detector is a silicon micromachined 32-pixel linear array of electrical

Impact of fin aspect ratio on enhancement of external quantum efficiency in single AlGaN fin light-emitting diodes pixels

June 26, 2023
Author(s)
Babak Nikoobakht, Yuqin Zong, Okan Koksal, Amit Agrawal, Christopher B. Montgomery, Jacob Leach, Michael Shur
Previously, we showed within a sub-micron fin shape heterojunction, as current density increases, the non-radiative Auger recombination saturates mediated by the extension of the depletion region into the fin, resulting in a droop-free behavior. In this

Integrating planar photonics for multi-beam generation and atomic clock packaging on chip

April 3, 2023
Author(s)
Chad Ropp, Wenqi Zhu, Alexander Yulaev, Daron Westly, Gregory Simelgor, Akash Rakholia, William Lunden, Dan Sheredy, Martin Boyd, Scott Papp, Amit Agrawal, Vladimir Aksyuk
The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics

Device Modeling Bias in ReRAM-Based Neural Network Simulations

January 20, 2023
Author(s)
Imtiaz Hossen, Matthew Daniels, Martin Lueker-Boden, Andrew Dienstfrey, Gina Adam, Osama Yousuf
The study of resistive-RAM (ReRAM) devices for energy efficient machine learning accelerators requires fast and robust simulation frameworks that incorporate realistic models of the device population. Jump table modeling has emerged as a phenomenological

The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead-End Filtration

December 22, 2022
Author(s)
Christopher Rust, Pavel Shapturenka, Manuel Spari, Andreas Bacher, Qihao Jin, Han Li, Markus Guttmann, Ming Zheng, Tehseen Adel, Angela R. Hight Walker, Jeffrey Fagan, Benjamin Flavel
Dead-end filtration on polyvinylpyrrolidone-coated polycarbonate track-etched membranes has proven to be an effective method to prepare macroscopically (3.8 cm²) aligned thin films from solution-based single-wall carbon nanotubes (SWCNTs). However, to make

Ultra-low loss quantum photonic circuits integrated with single quantum emitters

December 12, 2022
Author(s)
Ashish Chanana, Hugo Larocque, Renan Moreira, Jacques Carolan, Biswarup Guha, Emerson Goncalves De Melo, Vikas Anant, Jin Dong Song, Dirk Englund, Daniel Blumenthal, Marcelo Davanco, Kartik Srinivasan
Photon-based photonic quantum information systems require both scalable ultra-low loss photonic circuits and high-flux sources of single-photons. Direct integration of these sources and circuits is critical to realizing quantum systems that are scalable

Reflow transfer for conformal three-dimensional microprinting

November 24, 2022
Author(s)
Gary Zabow
From microcircuits to metamaterials, micropatterning surfaces adds valuable functionality. For non-planar surfaces, however, incompatibility with conventional microlithography requires transferring originally planar micropatterns onto those surfaces but
Was this page helpful?