An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Alexandros Chremos, Ferenc Horkay, Jack F. Douglas
Conformational properties of 'perfect' nanogel particles having a lattice network topology by molecular dynamics simulations to quantify the influence of polymer topology on the solution properties of this type of branched molecular architecture. In
Jack F. Douglas, Wengang Zhang, Francis W. Starr, Alexandros Chremos
We quantify the structure and dynamics in molecular simulations of star polymer films of varying arm mass Ma and number of star arms f on a supporting solid substrate with an attractive interaction and compare to the corresponding properties of thin films
Chronometry (a.k.a age-dating, AD) of materials by bulk mass spectrometric methods is a well-established technique based on analysis protocols that have been used in geological fields and by the non-proliferation communities for many years. Recently, it
Lorenzo Fallarino, Eva Lopez Rojo, Mikel Quintana, Juan Sebastian Salcedo Gallo, Brian Kirby, Andreas Berger
We demonstrate a nanoscale materials design path that allows us to bypass universality in thin ferromagnetic films and enables us to tune the critical exponents of ferromagnetic phase transitions in a very wide parameter range, while at the same time
This publication is a synopsis of an invited presentation by Nandita Abhyankar, presented to the International EPR Society in September 2021. The synopsis describes the advantages of planar inverse anapole microresonators for improving the sensitivity of
Jaylene Martinez, Adrienne K. Blevins, Jason Killgore, Yifu Ding
Capillary infiltration of porous medium impacts applications across oil recovery, soil science, and hydrology. The infiltration kinetics is typically captured by a range of models that differ in the approximation of pore structures, fluid properties, and
Analytical STEM-in-SEM has undergone a striking resurgence in terms of both methodology development and applications over the past 10 to 15 years, driven in part by the significant technological potential promised by low-dimensional structures such as
Nina Andrejevic, Zhantao Chen, Thanh Nguyen, Leon Fan, Henry Heiberger, Valeria Lauter, Ling-Jie Zhou, Yi-Fan Zhao, Cui-Zu Chang, Alexander Grutter, Mingda Li
Polarized neutron reflectometry (PNR) is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function
Ryan Stein, Zachary Barcikowski, Sujitra Pookpanratana, Joshua M. Pomeroy, Michael Stewart
Gate-defined quantum dots (QD) benefit from the use of small grain size metals for gates materials because it aids in shrinking the device dimensions. However, it is not clear what differences arise with respect to process-induced defect densities and
The Charpy Machine Verification Program at NIST in Boulder uses heat-treated 4340 steel for the production of indirect verification Charpy specimens at low- and high-energy level. Recently, a batch of steel purchased for the program turned out to be
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 um. These detectors are promising for applications in the mid-infrared
Nairiti Sinha, Yi Shi, Christopher J. Kloxin, Jeffery G. Saven, Antonio Faraone, Grethe V. Jensen, Darrin J. Pochan
Polymers constructed via hybrid physical-covalent assembly of computationally designed peptide coiled coils, or bundlemers, display tunable chain stiffness via control of inter-bundlemer connectivity. Neutron spin echo spectroscopy reveals that rigid rod
Zijun Jing, Qinqin Yuan, Yang Yu, Xiangtao Kong, Khai C. Tan, Jintao Wang, Qijun Pei, Xue-Bin Wang, Wei Zhou, Hui Wu, Anan Wu, Teng He, Ping Chen
Materials for hydrogen storage have been extensively explored for a few decades. Thousands of hydrogen storage materials have been synthesized and tested, however, sparse systems could meet the practical requirements. Metalorganic hydrides discovered
Howie Joress, Martin L. Green, Ichiro Takeuchi, Jason Hattrick-Simpers
High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization and discovery. The paradigm started in the pharmaceutical industry but was
Quantification of electron-exited X-ray spectra following the standards-based "k-ratio" (unknown/standard intensity) protocol with corrections for "matrix effects" (electron energy loss and backscattering, X-ray absorption, and secondary X-ray fluorescence
H. Lane, E. Rodriguez, H. C. Walker, Ch. Niedermayer, U. Stuhr, R. I. Bewley, D. J. Voneshen, M. A. Green, Jose Rodriguez Rivera, P. Fouquet, S.-W. Cheong, J. P. Attfield, R. A. Ewings, C. Stock
Kristina Kvashnina, Yoshiyuki Amemiya, Dibyendu Bhattacharyya, Ingolf Lindau, Andrew J. Allen
This is an Editorial for the Journal of Synchrotron Radiation (JSR) to inform all readers, authors and supporters about the coming transition of the journal to become fully open access. All papers submitted to JSR after 1 October 2021, will be for open
Yuriy Suhak, Holger Fritze, Andrei Sotnikov, Hagen Schmidt, Ward L. Johnson
Temperature-dependent acoustic loss Q^-1 is studied in partially disordered langasite (LGS, La3Ga5SiO14) and ordered catangasite (CTGS, Ca3TaGa3Si2O14) crystals and compared to previously reported CTGS and langatate (LGT, La3Ga5.5Ta0.5O14) data. Two
Alec Saville, Emily Mitchell, Sven Vogel, Adam Abel Creuziger, Jake Benzing, Kester Clarke, Jonah Klemm-Toole, Amy Clarke
This work presents a detailed instructional demonstration using the Rietveld refinement software MAUD for evaluating the crystallographic texture of single- and dual-phase materials, as applied to High-Pressure-Preferred-Orientation (HIPPO) neutron
Chia-Ying Chou, Niklas H. Pettersson, Durga A, Fan Zhang, Christos Oikonomou, Annika Borgenstam, Joakim Odqvist, Greta Lindwall
The microstructure of a hot-work tool steel additively manufactured using laser powder-bed fusion (L-PBF), and its response to post heat treatment, is studied in detail by microstructure characterization and computational thermodynamics and kinetics. The
Jian Zheng, Mohammad Wahiduzzaman, Dushyant Barpaga, Benjamin Trump, Oliver Gutierrez, Praveen Thallapally, Shengqian Ma, B. McGrail, Guillaume Maurin, Radha Motkuri
Eugene Yoon, Angela Stelson, Nate Orloff, Chris Long, Jim Booth, Ellis Meng
Thin film Parylene C has increasingly been employed as a substrate material with metals like platinum (Pt), especially in MEMS implantable devices. To assist in device design, broadband dielectric spectroscopy (up to 110 GHz) can characterize such