Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 576 - 600 of 2328

Uncertainty Prediction for Machine Learning Models of Material Properties

November 23, 2021
Author(s)
Francesca Tavazza, Brian DeCost, Kamal Choudhary
Uncertainty quantification in artificial intelligence (AI)-based predictions of material properties is of immense importance for the success and reliability of AI applications in materials science. While confidence intervals are commonly reported for

Activation of Mechanophores in a Thermoset Matrix by Instrumented Scratch

November 17, 2021
Author(s)
Chelsea S. Davis, Jeremiah Woodcock, Ryan Beams, Mitchell Rencheck, Muzhou Wang, Stephan J. Stranick, Aaron M. Forster, Jeffrey Gilman
Scratches in polymer coatings and barrier layers negatively impact optical properties (haze, light transmission, etc.), initiate routes of degradation or corrosion (moisture permeability), and nucleate delamination of the coating. Detecting scratches in

Chiral Spin Bobbers in Exchange-Coupled Hard-Soft Magnetic Bilayers

November 17, 2021
Author(s)
X. H. Zhang, T. R. Gao, L. Fang, S. Fackler, Julie Borchers, Brian Kirby, Brian B. Maranville, S. E. Lofland, A. T. N'Diaye, E. Arenholz, A. Ullah, J. Cui, R. Skomski, Ichiro Takeuchi
The spin structure of exchange-coupled MnBi:Co-Fe bilayers is investigated by X-ray magnetic circular dichroism (XMCD), polarized neutron reflectometry (PNR), and micromagnetic simu-lations. The purpose of the present research is two-fold. First, the

Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data

November 15, 2021
Author(s)
Vishu Gupta, Kamal Choudhary, Francesca Tavazza, Carelyn E. Campbell, Wei-Keng Liao, Alok Choudhary, Ankit Agrawal
Artificial Intelligence (AI) and Machine Learning (ML) has been increasingly used in materials science to build property prediction models and accelerate materials discovery. The availability of large materials databases for some properties like formation

Evaluation of a Modified Void Descriptor Function to Uniquely Characterize Pore Networks and Predict Fracture Location in Additively Manufactured Metals

November 15, 2021
Author(s)
Dillon Watring, Jake Benzing, Orion Kafka, Li-Anne Liew, Newell Moser, John Erickson, Nik Hrabe, Ashley Spear
Variations in additive manufacturing (AM) processing parameters can lead to variations in porosity, making it challenging to predict pore- or void-sensitive mechanical response in AM metals. A recently developed pore metric, the void descriptor function

Bubble Point Measurements of Mixtures of HFO and HFC Refrigerants

November 1, 2021
Author(s)
Stephanie L. Outcalt, Aaron Rowane
Bubble point pressures of six binary mixtures at two compositions each have been measured utilizing a static method. The performance of the apparatus was characterized from bubble point measurements of R32 + R125 for which 19 literature studies are

Non-volatile Multi-level Switching in Artificial Synaptic Transistors Based on Epitaxial LiCoO2 Thin Films

October 26, 2021
Author(s)
Heshan Yu, Megan E. Holtz, Yunhui Gong, Justin Pearson, Yaoyu Ren, Andrew Herzing, Xiaohang Zhang, Ichiro Takeuchi
Li-ion synaptic transistors offer non-volatile multi-level switching through Li-ion exchange between channel and electrolyte, and thus are widely regarded as promising candidates for the neuromorphic computing. However, a relatively low switching speed in

Effects of Intervalence Charge Transfer Interaction between p-Stacked Mixed Valent Tetrathiafulvalene Ligands on the Electrical Conductivity of 3D Metal-Organic Frameworks

October 20, 2021
Author(s)
Shiyu Zhang, Dillip K. Panda, Ashok Yadav, Wei Zhou, Sourav Saha
Achieving molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the key parameters that dictate their electronic band gaps and

Lessons learned from FeSb2O4 on stereoactive lone pairs as a design principle for anion insertion

October 20, 2021
Author(s)
Wasif Zaheer, George Agbeworvi, Saul Perez-Beltran, Justin Andrews, Yierpan Aierken, Conan Weiland, Cherno Jaye, Young-Sang Yu, David Shapiro, Sirine Fakra, Daniel A. Fischer, Jinghua Guo, David Prendergrast, Sarbajit Banerjee
Fluoride-ion batteries are an attractive energy storage concept analogous to lithium-ion batteries but feature an inverted paradigm where anions (fluoride-ion), and not cations, are the principal charge carriers. Insertion hosts that can reversibly insert

On the Future of Scientific Publication

October 12, 2021
Author(s)
Peter Strickland, Andrew J. Allen
We give a brief review of the rapidly changing landscape for scientific publication, especially in regard to scientific archival journal publication. Some of the many challenges and opportunities are outlined. These include the various forms of open access

Synthesis, structure, electronic and thermal properties of sphalerite CuZn2InS4

October 12, 2021
Author(s)
Oluwagbemiga P. Ojo, Wilarachchige D. C. B. Gunatilleke, Hagen Poddig, Hsin Wang, Joshua B. Martin, Dylan J. Kirsch, George S. Nolas
Quaternary chalcogenides continue to be of interest due to the variety of physical properties they possess, as well as their potential for different applications of interest. Investigations on materials with the sphalerite crystal structure have only

Microwave characterization of graphene inks

October 11, 2021
Author(s)
Jan Obrzut, Ana C. M. Moraes
Systematic charge transport characterization of solution-processed graphene inks using ethyl cellulose polymer as a binder/stabilizer, showed graphene patterns with high mobility ( 160 cm2 V-1 s-1), low energy gap, thermally activated charge transport and

Antiferromagnetic VdW Phase at the Interface of Sputtered Topological Insulator/Ferromagnet Bi 2 Te 3 /Ni 80 Fe 2 0 Heterostructures

October 6, 2021
Author(s)
Nirjhar Bhattacharjee, Krishnamurthy Mahalingam, Adrian Fedorko, Valeria Lauter, Matthew Matzelle, Bahadur Singh, Alexander Grutter, Alexandria Will-Cole, Michael Page, Michael McConney, Robert Markiewicz, Arun Bansil, Don Heiman, Nian Sun
Magnetic ordering in topological insulators (TI) is crucial for breaking time-reversal symmetry (TRS) and thereby opening a gap in the topological surface states (TSSs) [1-6], which is the key for realizing useful topological properties such as the quantum

Investigation of the Effect of Artificial Internal Defects on the Tensile Behavior of Laser Powder Bed Fusion 17-4 Stainless Steel Samples: Simultaneous Tensile Testing and X-Ray Computed Tomography

October 5, 2021
Author(s)
Felix Kim, Shawn P. Moylan, Thien Q. Phan, Edward Garboczi
Insufficient data are available to fully understand the effects of metal additive manufacturing (AM) defects for widespread adoption of the emerging technology. Characterization of failure processes of complex internal geometries and defects in metal AM
Was this page helpful?