Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Conferences

Photon-Efficient High-Dimensional Quantum Key Distribution

Author(s)
Tian Zhong, Hongchao Zhou, Ligong Wang, Gregory Wornell, Zheshen Zhang, Jeffrey Shapiro, Franco N. Wong, Rob Horansky, Varun Verma, Adriana Lita, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Alessandro Restelli, Joshua Bienfang, Francesco Marsili, Matthew Shaw
We demonstrate two high-dimensional QKD protocols - secure against collective Gaussian attacks - yielding up to 8.6 secure bits per photon and 6.7 Mb/s

650 GHz bistatic scattering measurements on human skin

Author(s)
Richard A. Chamberlin, Natalie P. Mujica-Schwahn, Erich N. Grossman
Many groups are developing submillimeter cameras that will be used to screen human subjects for improvised explosive devices (IEDs) and other threat items

Design and Analysis of a 150 K Cascade Joule-Thomson Microcooler

Author(s)
Ray Radebaugh, Peter E. Bradley, Collin J. Coolidge, Ryan J. Lewis, Y.C. Lee
Lightweight and compact microcoolers are needed for advanced, hand-held infrared systems. A temperature of 150 K is adequate for high sensitivity with some of

Energy Control Paradigm for Compliance-Free Reliable Operation of RRAM

Author(s)
Pragya R. Shrestha, David M. Nminibapiel, Jihong Kim, Jason P. Campbell, Kin P. Cheung, Shweta Deora, G. Bersuker, Helmut Baumgart
We demonstrate reliable RRAM operation by controlling the forming energy via short voltage pulses (picosecond range) which eliminates the need for a current
Was this page helpful?