Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

John Kitching

John Kitching is a Group Leader and Fellow at the National Institute of Standards and Technology and Lecturer at the University of Colorado, Boulder. His research focusses on the development of compact devices and instruments that combine atomic spectroscopy, silicon micromachining and photonics. He and his group pioneered the development of chip-scale atomic clocks and magnetometers, and have been involved in their application to problems in biomagnetism and nuclear magnetic resonance. He is currently involved in the development of compact, SI-traceable standards of length, time, voltage, current and temperature under the NIST on a Chip program, as well as project to develop compact laser-cooled time and inertial measurement standards. He received his BSc in Physics from McGill University in 1990 and his PhD degree in Applied Physics from the California Institute of Technology in 1995. He served as co-chair of the APS Division of Laser Science Annual Meeting in 2008, and co-chair of the Technical Program Committee of the IEEE International Frequency Control Symposium in 2019.

A full list of publications can be found here.

US Patent 6,806,784 B2, 2004: Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel.

Awards

Fellow of the American Physical Society
Federal Laboratories Consortium Award for Excellence in Technology Transfer, 2017
IEEE I. I. Rabi Award, 2016
IEEE Sensors Council Technical Achievement Award, 2015
Department of Commerce Gold Medal, 2014
Rank Prize in Optoelectronics, 2014
CO-LABS Governors Award, 2013
NIST Fellow, 2013-present
Arthur S. Flemming Award, 2008
Jacob Rabinow Applied Research Award, NIST, 2007
Jack Raper Award for Outstanding Technology-Directions, International Solid-State Circuits Conference, 2005
Department of Commerce Silver Medal, 2005.
European Young Scientist Award, presented by the European Frequency and Time Forum, 2005.
Governor General of Canada’s Silver Medal, 1990
Governor General of Canada’s Bronze Medal, 1986

Publications

Developing Next-generation Brain Sensing Technologies - A Review

Author(s)
Jacob T. Robinson, Eric Pohlmeyer, Malte C. Gather, Caleb Kemere, John E. Kitching, George G. Malliaras, Adam Marblestone, Kenneth L. Shepard, Thomas Stieglitz, Chong Xie
Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal

A Cold-Atom Beam Clock, based on Coherent Population Trapping

Author(s)
John D. Elgin, Thomas P. Heavner, John E. Kitching, Elizabeth A. Donley, Jayson Denney, Evan Salim
We present results from a novel atomic clock which employs a beam of cold 87 Rb atoms and spatially separated (Ramsey) coherent population trapping

Magneto-optic trap using a reversible, solid-state alkali-metal source

Author(s)
Songbai Kang, Kaitlin R. Moore, James P. McGilligan, R. Mott, A. Mis, C. Roper, Elizabeth A. Donley, John E. Kitching
Fast, reversible, and low-power alkali-atom sources are desirable in both tabletop and portable cold-atom sensors. Here we demonstrate a magneto-optic trap (MOT

Architecture for the photonic integration of an optical atomic clock

Author(s)
Zachary L. Newman, Vincent N. Maurice, Tara E. Drake, Jordan R. Stone, Travis Briles, Daryl T. Spencer II, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, B. Shen, M.-G Suh, K. Y. Yang, C Johnson, D.M. S. Johnson, Leo Hollberg, K. Vahala, Kartik A. Srinivasan, Scott A. Diddams, John E. Kitching, Scott B. Papp, Matthew T. Hummon
Optical atomic clocks, which rely on high-frequency, narrow-line optical transitions to stabilize a clock laser, outperform their microwave counterparts by
Created October 29, 2018, Updated July 2, 2020