Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Climate Science Projects

Climate Science
Credit: Adobe Stock

The CSD activities in climate science are integral to the MML program in Natural Resources Monitoring and Human Health. These efforts include the production of Standard Reference Materials® and Standard Reference Data, the development of chemical informatic tools, and creation of analytical methods to enable highly accurate measurements of carbon dioxide in the atmosphere and in the world’s oceans.  CSD scientists are nearing the release of the first reference material that will provide SI-traceable measurements of seawater pH and are helping co-ordinate interlaboratory studies to ascertain additional needs. This work underpins current scientific understanding of the global carbon cycle.  These activities provide the instruments, standards, data, and informatics tools in support of the Nation’s need to characterize gaseous species and aerosols in Earth’s atmosphere.  By advancing chemical metrology and data analysis tools, these activities provide the critical infrastructure needed by industry, government, and academia for the assessment of climate change, to inform public policy. 

 

PROJECT AREAS 

 

REFERENCE MATERIALS 

Gas SRMs 

1661a 

Sulfur Dioxide in Nitrogen (Nominal Amount-of-Substance Fraction 500 µmol/mol) 

1663a 

Sulfur Dioxide in Nitrogen (Nominal Amount-of-Substance Fraction 1500 µmol/mol) 

1667b 

Propane in Air (Nominal Amount-of-Substance Fraction 50 µmol/mol) 

1669b 

Propane in Air (Nominal Amount-of-Substance Fraction 500 µmol/mol) 

1674b 

Carbon Dioxide in Nitrogen (Nominal Amount-of-Substance Fraction 7 % mol/mol) 

1677c 

Carbon Monoxide in Nitrogen (Nominal Amount-of-Substance Fraction 10 µmol/mol) 

1678c 

Carbon Monoxide in Nitrogen (Nominal Amount-of-Substance Fraction 50 µmol/mol) 

1679c 

Carbon Monoxide in Nitrogen (Nominal Amount-of-Substance 100 µmol/mol) 

1680b 

Carbon Monoxide in Nitrogen (Nominal Amount-of-Substance Fraction 500 µmol/mol) 

1681b 

Carbon Monoxide in Nitrogen (Nominal Amount-of-Substance Fraction 1000 µmol/mol) 

1684b 

Nitric Oxide in Nitrogen (Nominal Amount-of-Substance Fraction 100 µmol/mol) 

1685b 

Nitric Oxide in Nitrogen (Nominal Amount-of-Substance Fraction 250 µmol/mol) 

1686b 

Nitric Oxide in Nitrogen (Nominal Amount-of-Substance Fraction 500 µmol/mol) 

1687b 

Nitric Oxide in Nitrogen (Nominal Amount-of-Substance Fraction 1000 µmol/mol) 

1693a 

Sulfur Dioxide in Nitrogen (Nominal Amount-of-Substance Fraction 50 µmol/mol) 

1694a 

Sulfur Dioxide in Nitrogen (Nominal Amount-of-Substance 100 µmol/mol) 

1696a 

Sulfur Dioxide in Nitrogen (Nominal Amount-of-Substance Fraction 3500 µmol/mol) 

 

ASSOCIATED PUBLICATIONS 

  1. Orkin, V. L., Khamaganov, V. G., and Kurylo, M. J., "Experimental kinetic study of the reactions between OH radicals and three 2-butenes over the temperature range 220-370 K and pressure range 0.67-40 kPa (5-300 Torr)," International Journal of Chemical Kinetics, 55, 221-237 (2023). 

  1. Clegg, S. L., Humphreys, M. P., Waters, J. F., Turner, D. R., and Dickson, A. G., "Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties. II. Tris buffers in artificial seawater at 25C, and an assessment of the seawater Total pH scale," Marine Chemistry, 244, (2022). 

  1. C. E. Cecelski, K. J. Harris,A. Goodman, W. A. Kimes, Q. Liu,R. Miller, J. Carney  “Certification of NIST Gas Mixture Standard Reference Materials,” NIST Special Publication (NIST SP) 260-222 (2022). 

  1. Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E. V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y., Wcislo, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin, A. V., Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Cane, E., Csaszar, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J., Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann, J. M., Horneman, V. M., Huang, X., Karman, T., Karns, J., Kassi, S., Kleiner, I., Kofman, V., Kwabia-Tchana, F., Lavrentieva, N. N., Lee, T. J., Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Y., Matt, W., Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Muller, H. S. P., Naumenko, O. V., Perrin, A., Polyansky, O. L., Raddaoui, E., Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tobias, R., Sadiek, I., Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun, S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G. L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N., "The HITRAN2020 molecular spectroscopic database," Journal of Quantitative Spectroscopy & Radiative Transfer, 277, (2022). 

  1. Guallart, E. F., Fajar, N. M., Garcia-Ibanez, M. I., Castano-Carrera, M., Santiago-Domenech, R., Hassoun, A. E., Perez, F. F., Easley, R. A., and Alvarez, M., "Spectrophotometric Measurement of Carbonate Ion in Seawater over a Decade: Dealing with Inconsistencies," Environmental Science & Technology, 56, 7381-7395 (2022). 

  1. Humphreys, M. P., Waters, J. F., Turner, D. R., Dickson, A. G., and Clegg, S. L., "Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties: Artificial seawater from 0 to 45 C," Marine Chemistry, 244, (2022). 

  1. Lisak, D., Charczun, D., Nishiyama, A., Voumard, T., Wildi, T., Kowzan, G., Brasch, V., Herr, T., Fleisher, A. J., Hodges, J. T., Ciurylo, R., Cygan, A., and Maslowski, P., "Dual-comb cavity ring-down spectroscopy," Scientific Reports, 12, (2022). 

  1. Long, D. A., Adkins, E. M., Mendonca, J., Roche, S., and Hodges, J. T., "The effects of advanced spectral line shapes on atmospheric carbon dioxide retrievals," Journal of Quantitative Spectroscopy & Radiative Transfer, 291, (2022). 

  1. K. Bielska, A. A. Kyuberis, Z. D. Reed, G. Li, A. Cygan, R. Ciuryło, E. M. Adkins, L. Lodi, N. F. Zobov, V. Ebert, D. Lisak, J. T. Hodges, J. Tennyson and O. L. Polyansky, “Sub-promille measurements and calculations of CO (3-0) overtone line intensities,” Phys. Rev. Lett., 129, 043002 (2022). 

  1. Srivastava and J. T. Hodges, "Primary measurement of gaseous elemental mercury concentration with a dynamic range of six decades," Analy. Chem., 94, 15818-15826, (2022). 

  1. J. T. Hodges, J. Viallon, P. J. Brewer, B. J. Drouin, V. Gorshelev,M.P. Humphreys, J.F. Waters, D.R. Turner, A.G. Dickson and S.L. Clegg, “Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties: Artificial seawater from 0 to 45 oC,” Marine Chem., 2022, 244, DOI 10.1016/j.marchem.2022.104095. 

  1. J. Fleisher, H. Yi, A. Srivastava, O. L. Polyansky, N. F. Zobov and J. T. Hodges, “Absolute 13C/12C isotope amount ratio for Vienna Pee Dee Belemnite from infrared absorption spectroscopy”, Nat. Phys. Lett., April 26, (2021).  

  1. Bailey, D. M., Zhao, G., and Fleisher, A. J., "Precision Spectroscopy of Nitrous Oxide Isotopocules with a Cross-Dispersed Spectrometer and a Mid-Infrared Frequency Comb," Analytical Chemistry, 92, 13759-13766 (2020). 

  1. Li, X. Y., Garcia-Ibanez, M. I., Carter, B. R., Chen, B. S., Li, Q., Easley, R. A., and Cai, W. J., "Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements," Marine Chemistry, 225, (2020). 

  1. Yao, Q., Asa-Awuku, A., Zangmeister, C. D., and Radney, J. G., "Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape," Aerosol Science and Technology, 54, 1197-1209 (2020). 

  1. D.A. Long, Z.D. Reed, A.J. Fleisher, J. Mendonca and J.T. Hodges, “High accuracy near-infrared carbon dioxide intensity measurements to support remote sensing,” Geophys. Res. Lett. 47, (2020). 

  1. Z.D. Reed, H. Fleurbaey, D.A. Long and J.T. Hodges, “Molecular transition frequency measurements at the 10-12 relative uncertainty level,” Optica 7, 1209-1219, (2020). 

  1. Brewer, P. J., Kim, J. S., Lee, S., Tarasova, O. A., Viallon, J., Flores, E., Wielgosz, R. I., Shimosaka, T., Assonov, S., Allison, C. E., van der Veen, A. M. H., Hall, B., Crotwell, A. M., Rhoderick, G. C., Hodges, J. T., Mahn, J., Zellweger, C., Moossen, H., Ebert, V., and Griffith, D. W. T., "Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations," Metrologia, 56, (2019). 

  1. Plusquellic, D. F., Wagner, G. A., Briggman, K., Fleisher, A. J., Long, D. A., and Hodges, J. T., "Simultaneous DIAL, IPDA and point sensor measurements of the greenhouse gases, CO2 and H2O," 2019 Conference on Lasers and Electro-Optics (Cleo), (2019). 

  1. Zangmeister, C. D., Grimes, C. D., Dickerson, R. R., and Radney, J. G., "Characterization and demonstration of a black carbon aerosol mimic for instrument evaluation," Aerosol Science and Technology, 53, 1322-1333 (2019). 

  1. Janssen, S. Lee, A. Possolo, M. A. H. Smith, J. Walden, and R. I. Wielgosz, “Recommendation of a consensus value of the ozone absorption cross-section at 253.65 nm based on a literature review,” Metrologia, Volume 56, Number 3 (2019).  

  1. Elijah J. Petersen, Antonio R. Montoro Bustos, Blaza Toman, Monique E. Johnson, Mark Ellefson, George C. Caceres, Anna Lena Neuer, Qilin Chan, Jonathan W. Kemling, Brian Mader, Karen Murphy and Matthias Roesslein, “Determining what really counts: modeling and measuring nanoparticle number concentrations,” Environ. Sci.: Nano, 2019, 6, 2876 – (2019 Best Paper) 

  1. Rhoderick, G. C., Kelley, M. E., Miller, W. R., Norris, J. E., Carney, J., Gameson, L., Cecelsld, C. E., Harris, K. J., Goodman, C. A., Srivastava, A., and Hodges, J. T., "NIST Standards for Measurement, Instrument Calibration, and Quantification of Gaseous Atmospheric Compounds," Analytical Chemistry, 90, 4711-4718 (2018). 

  1. Zangmeister, C. D., You, R., Lunny, E. M., Jacobson, A. E., Okumura, M., Zachariah, M. R., and Radney, J. G., "Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol," Carbon, 136, 85-93 (2018). 

  1. Zangmeister, C. D., Radney, J. G., "Absorption Spectroscopy of Black and Brown Carbon Aerosol,". In: Multiphase Environmental Chemistry in the Atmosphere. ACS Publications, pp. 275-297 (2018). 

  1. Bailey, D. M., Adkins, E. M., and Miller, J. H., "An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska," Applied Physics B, 123, 1-10 (2017). 

  1. Radney, J. G., You, R., Zachariah, M. R., and Zangmeister, C. D., "Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods," Environmental Science & Technology, 51, 5622-5629 (2017). 

  1. Radney, J. G. and Zangmeister, C. D.,  "Light source effects on aerosol photoacoustic spectroscopy measurements," Journal of Quantitative Spectroscopy and Radiative Transfer, 187, 145-149 (2017). 

  1. Zangmeister, C., "Measured absorption spectra of aerosolized carbonaceous species and their influence on climate forcing," Abstracts of Papers of the American Chemical Society, 254, (2017). 

  1. Allison, T. C., "Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential," Journal of Physical Chemistry B, 120, 1854-1863 (2016). 

  1. Betowski, D., Bevington, C., and Allison, T. C., "Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential," Environmental Science & Technology, 50, 790-797 (2016). 

  1. Radney, J. G. and Zangmeister, C. D.,  "Practical limitations of aerosol separation by a tandem differential mobility analyzer-aerosol particle mass analyzer," Aerosol Science and Technology, 50, 160-172 (2016). 

  1. Rhoderick, G. C., Kitzis, D. R., Kelley, M. E., Miller, W. R., Hall, B. D., Dlugokencky, E. J., Tans, P. P., Possolo, A., and Carney, J., "Development of a Northern Continental Air Standard Reference Material," Analytical Chemistry, 88, 3376-3385 (2016). 

  1. Lin, H., Reed, Z. D., Sironneau, V. T., and Hodges, J. T., "Cavity ring-down spectrometer for high-fidelity molecular absorption measurements," Journal of Quantitative Spectroscopy & Radiative Transfer, 161, 11-20 (2015). 

  1. Long, D. A., Wojtewicz, S., Miller, C. E., and Hodges, J. T., "Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)<-(00001) near-infrared carbon dioxide band," Journal of Quantitative Spectroscopy & Radiative Transfer, 161, 35-40 (2015). 

  1. Orkin, V. L., Khamaganov, V. G., and Guschin, A. G., "Photochemical Properties of Hydrofluoroethers CH3OCHF2, CH3OCF3, and CHF2OCH2CF3: Reactivity toward OH, IR Absorption Cross Sections, Atmospheric Lifetimes, and Global Warming Potentials," Journal of Physical Chemistry A, 118, 10770-10777 (2014). 

  1. Orkin, V. L., Martynova, L. E., and Kurylo, M. J., "Photochemical Properties of trans-1-Chloro-3,3,3-trifluoropropene (trans-CHCl=CHCF3): OH Reaction Rate Constant, UV and IR Absorption Spectra, Global Warming Potential, and Ozone Depletion Potential," Journal of Physical Chemistry A, 118, 5263-5271 (2014). 

  1. Radney, J. G., You, R. A., Ma, X. F., Conny, J. M., Zachariah, M. R., Hodges, J. T., and Zangmeister, C. D., "Dependence of Soot Optical Properties on Particle Morphology: Measurements and Model Comparisons," Environmental Science & Technology, 48, 3169-3176 (2014). 

  1. Rhoderick, G. C., Duewer, D. L., Apel, E., Baldan, A., Hall, B., Harling, A., Helmig, D., Heo, G. S., Hueber, J., Kim, M. E., Kim, Y. D., Miller, B., Montzka, S., and Riemer, D., "International Comparison of a Hydrocarbon Gas Standard at the Picomol per Mol Level,"  Analytical Chemistry, 86, 2580-2589 (2014). 

  1. Long, D. A. and Hodges, J. T., "On spectroscopic models of the O-2 A-band and their impact upon atmospheric retrievals," Journal of Geophysical Research-Atmospheres, 117, (2012). 

  1. Long, D. A., Cygan, A., van Zee, R. D., Okumura, M., Miller, C. E., Lisak, D., and Hodges, J. T., "Frequency-stabilized cavity ring-down spectroscopy," Chemical Physics Letters, 536, 1-8 (2012). 

  1. Rhoderick, G. C., Carney, J., and Guenther, F. R., "NIST Gravimetrically Prepared Atmospheric Level Methane in Dry Air Standards Suite," Analytical Chemistry, 84, 3802-3810 (2012). 

  1. Patten, K. O., Khamaganov, V. G., Orkin, V. L., Baughcum, S. L., and Wuebbles, D. J., "OH reaction rate constant, IR absorption spectrum, ozone depletion potentials and global warming potentials of 2-bromo-3,3,3-trifluoropropene," Journal of Geophysical Research-Atmospheres, 116, (2011). 

  1. Rhoderick, G. C., Duewer, D. L., Ning, L., and DeSirant, K., "Hydrocarbon Gas Standards at the pmol/mol Level to Support Ambient Atmospheric Measurements," Analytical Chemistry, 82, 859-867 (2010). 

  1. Orkin, V. L., Guschin, A. G., Larin, I. K., Huie, R. E., and Kurylo, M. J., "Measurements of the infrared absorption cross-sections of haloalkanes and their use in a simplified calculational approach for estimating direct global warming potentials," Journal of Photochemistry and Photobiology A-Chemistry, 157, 211-222 (2003). 

  1. Orkin, V. L., Villenave, E., Huie, R. E., and Kurylo, M. J., "Atmospheric lifetimes and global warming potentials of hydrofluoroethers: Reactivity toward OH, UV spectra, and IR absorption cross sections," Journal of Physical Chemistry A, 103, 9770-9779 (1999). 

Created September 11, 2023, Updated September 19, 2023