Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Artificial intelligence (AI) applications are becoming more and more prevalent in our everyday lives. Most contemporary implementations of AI use digital logic and the conventional CMOS hardware that has enabled the information revolution. A team of NIST researchers seeks to enable future generations of AI by focusing on fabricating and measuring new brain-inspired circuits and architectures based on novel devices to deliver computing methods, speeds, and energies better than those achievable using the current computing paradigm. Conventional computing represents information with binary encoding – ones and zeros times different powers of two. The variety of approaches studied at NIST are founded on the concept that computing can be more efficient when information is directly represented by the physical properties of devices themselves. The devices then perform the computation directly, as opposed to the conventional approach of manipulating the binary representation.

The need for these novel approaches is driven by several realities of modern computing. We are pushing computers to take on tasks that humans are much better at than traditional computers. The demands for this type of computing is growing much faster than the capabilities of traditional computers. Perhaps most of all, the energy required to deliver the computations is the most rapidly increasing sector of energy consumption in the world, and it must be reduced to limit the impact on the climate. It is also essential to make computing more efficient in “edge” applications in which computers are embedded in devices that have very restricted energy supplies. The efficiency of the brain drives research that identifies devices acting like the neurons and synapses of the brain and uses them to enable algorithms that compute like the brain. NIST’s AI Hardware team’s research aims to develop the necessary device-level and circuit-level measurements and theory to support the evolution of this technology from laboratory research to commercial application.

The Research

Projects & Programs

Physics and Hardware for Intelligence

Artificial intelligence increasingly affects many aspects of society. New computational hardware based on information-processing in the brain is being developed

Spintronics for Neuromorphic Computing

One promising new approach to next generation information processing is spintronics, where information is carried by electronic spin rather than charge. Among

Temporal Computing

The human brain does some types of information processing, like speech recognition, image recognition, or video processing, much more efficiently than can be

Neuromorphic Device Measurements

Neuromorphic computing is a radical new approach to information processing for artificial intelligence where, instead of using digital electronics, inspiration