Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Newell Moser (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 19 of 19

Evidence for contributions of lack-of-fusion defects and dislocations to acoustic nonlinearity and loss in additively manufactured aluminum

February 2, 2024
Author(s)
Ward L. Johnson, Paul R. Heyliger, Jake Benzing, Orion Kafka, Newell Moser, Derek Harris, Jeremy Iten, Nik Hrabe
Resonant acoustic nonlinearity and loss have previously been found to be correlated with porosity in additively manufactured (AM) commercially pure aluminum and stainless steel, and this effect offers a potential basis for rapid nondestructive

AM Bench 2022 Macroscale Tensile Challenge at Different Orientations (CHAL-AMB2022-04-MaTTO) and Summary of Predictions

January 16, 2024
Author(s)
Newell Moser, Jake Benzing, Orion Kafka, Jordan Weaver, Nicholas Derimow, Ross Rentz, Nik Hrabe
The additive manufacturing benchmarking challenge described in this work was aimed at the prediction of average stress–strain properties for tensile specimens that were excised from blocks of non-heat-treated IN625 manufactured by laser powder bed fusion

Unintended consequences: Assessing thermo-mechanical changes in vinyl nitrile foam due to micro-computed X-ray tomographic imaging

October 5, 2023
Author(s)
Alexander Landauer, Zois Tsinas, Orion Kafka, Newell Moser, Jack Leigh Glover, Aaron M. Forster
Micro-computed X-ray tomography (μCT) is a volumetric imaging tool used to quantify the internal structure of materials. μCT imaging with mechanical testing (in situ μCT) helps visualize strain-induced structural changes and develop structure-property

A Materials Data Framework and Dataset for Elastomeric Foam Impact Mitigating Materials

June 5, 2023
Author(s)
Alexander Landauer, Orion Kafka, Newell Moser, Ian Foster, Ben Blaiszik, Aaron M. Forster
The availability of materials data for impact-mitigating materials has lagged behind applications-based data. For example, data describing on-field helmeted impacts are available, whereas material behaviors for the constituent impact mitigating materials

Pore Formation Driven by Particle Impact in Laser, Powder-blown Directed Energy Deposition

May 26, 2023
Author(s)
Edward Garboczi, Newell Moser, Samantha Webster, Kornel Ehmann, Jian Cao, Kamel Fezzaa, Tao Sun
Material manufactured by laser, powder-blown directed energy deposition often contains residual pores, which can be detrimental to the strength and fatigue life of a part. We uncover a new kind of pore formation that is driven by powder particle impact

Determining Steel Weld Qualification and Performance for Hydrogen Pipelines: Phase I Report

May 23, 2023
Author(s)
Matthew Connolly, May Ling Martin, Zack Buck, Newell Moser, Enrico Lucon, Damian Lauria, Peter Bradley, Andrew Slifka, Robert Amaro
This report details the results of Phase I of the DOT/PHMSA sponsored work on "Determining Steel Weld Qualification and Performance for Hydrogen Pipelines". In this work, the goals of Phase I were 1) to perform a literature review of steel weld

Assessment of intra-build variations in tensile strength in electron beam powder-bed fusion Ti-6Al-4V part 1: Effects of build height

June 2, 2022
Author(s)
Nicholas Derimow, Alejandro Romero, Aldo Rubio, Cesar Terrazas, Newell Moser, Orion Kafka, Jake Benzing, Francisco Medina, Ryan Wicker, Nik Hrabe
In this work, rectangular blocks of electron beam powder-bed fusion (PBF-EB) additively manufactured (AM) Ti-6Al-4V were built, such that a total of 68 mini-tensile test coupons could be extracted for mechanical testing over a range of build height and

Assessment of intra-build variations in tensile strength in electron beam powder-bed fusion Ti-6Al-4V part 2: Effects of powder mixing

May 31, 2022
Author(s)
Nicholas Derimow, Jake Benzing, Orion Kafka, Newell Moser, Priya Pathare, Michael Walker, Frank DelRio, Nik Hrabe
In Part 2 of this paper series, high-throughput tensile testing and characterization of porosity, microstructure, and oxygen content was carried out on Ti-6Al-4V samples that were fabricated via electron beam powder-bed fusion (PBF-EB) to test our

Print Fidelity Metrics for Additive Manufacturing of Cement-based Materials

March 24, 2022
Author(s)
Edward Garboczi, Newell Moser, Joseph Biernacki, Hajar Afarani, Ebrahim Esfahani
Additively manufactured cement-based structures for infrastructure applications suffer from in-construction shape deformations, which are a strong function of process conditions and the rheology of the printing material (cement paste, mortar, or concrete)

Interface History on Strain Field Evolution in Epoxy Resins

January 21, 2022
Author(s)
Edward Garboczi, Newell Moser, Jena McCollum, Jared Strutton, Abby Jennings, Brandon Runnels
To determine the viability of digital image correlation in the analysis of additively manufactured thermosets, we devised a testing method to examine the effect of interface history (i.e., time between interface formation and original material deposition)

Evaluation of a Modified Void Descriptor Function to Uniquely Characterize Pore Networks and Predict Fracture Location in Additively Manufactured Metals

November 15, 2021
Author(s)
Dillon Watring, Jake Benzing, Orion Kafka, Li-Anne Liew, Newell Moser, John Erickson, Nik Hrabe, Ashley Spear
Variations in additive manufacturing (AM) processing parameters can lead to variations in porosity, making it challenging to predict pore- or void-sensitive mechanical response in AM metals. A recently developed pore metric, the void descriptor function

Advancing the Accuracy of Computational Models for Double-sided Incremental Forming

July 11, 2021
Author(s)
Newell Moser, Dohyun Leem, Liao Shuheng, Kornel Ehmann, Jian Cao
Double-Sided Incremental Forming (DSIF) is a rapid-prototyping manufacturing process for metal forming that, for low-volume production, is competitively energy-efficient. However, controlling the DSIF process in terms of accuracy and formability is an