Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Gregory Moille (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 31

Parametrically driven pure-Kerr dissipative solitons in a chip-integrated microcavity

March 14, 2024
Author(s)
Gregory Moille, Miriam Leonhardt, David Paligora, Nicolas Englebert, Francois Leo, Julien Fatome, Kartik Srinivasan, Miro Erkintalo
The discovery that externally-driven nonlinear optical resonators can sustain ultrashort pulses cor- responding to coherent optical frequency combs has enabled landmark advances in applications from telecommunications to sensing. The research focus has

Kerr-induced synchronization of a cavity soliton to an optical reference

December 13, 2023
Author(s)
Gregory Moille, Jordan Stone, Michal J. Chojnacky, Curtis Menyuk, Kartik Srinivasan
The phase-coherent frequency division of a stabilized optical reference laser to the microwave domain is made possible by optical-frequency combs (OFCs). OFC-based clockworks lock one comb tooth to a reference laser, which probes a stable atomic transition

Predicting broadband resonator-waveguide coupling for microresonator frequency combs through fully connected and recurrent neural networks with and without attention mechanism

May 24, 2023
Author(s)
Ergun Simsek, Masoud Soroush, Gregory Moille, Kartik Srinivasan, Curtis Menyuk
Broadband microresonator frequency combs are being intensely pursued for deployable technologies like optical atomic clocks. Spectral features, such as the dispersion in their coupling to an access waveguide, are critical for engineering these devices for

High-performance Kerr microresonator optical parametric oscillator on a silicon chip

January 16, 2023
Author(s)
Edgar Perez, Gregory Moille, Xiyuan Lu, Jordan Stone, Feng Zhou, Kartik Srinivasan
Optical parametric oscillation (OPO) is distinguished by its wavelength access, that is, the ability to flexibly generate coherent laser light at wavelengths that are dramatically different from the pump laser, and in principle bounded solely by energy

Efficient chip-based optical parametric oscillators from 590 nm to 1150 nm

December 2, 2022
Author(s)
Jordan Stone, Xiyuan Lu, Gregory Moille, Kartik Srinivasan
Optical parametric oscillators are a ubiquitous technology used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to

Ultra-broadband Kerr microcomb through soliton spectral translation

December 14, 2021
Author(s)
Gregory Moille, Edgar Perez, Jordan Stone, Ashutosh Rao, Xiyuan Lu, Tahmid Rahman, Yanne Chembo, Kartik Srinivasan
Broad bandwidth and stable microresonator frequency combs are critical for optical atomic clocks, optical frequency synthesis, dual comb spectroscopy, and a host of other applications that require accurate and precise optical frequency measurements in a

Topological Frequency Combs and Nested Temporal Solitons

August 5, 2021
Author(s)
Sunil Mittal, Gregory Moille, Kartik Srinivasan, Yanne Chembo, Mohammad Hafezi
Recent advances in realizing optical frequency combs using nonlinear parametric processes in integrated photonic resonators have revolutionized on-chip optical clocks, spectroscopy, and multi channel optical communications. At the same time, the

Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs

May 26, 2021
Author(s)
Ashutosh Rao, Gregory Moille, Xiyuan Lu, Daron Westly, Davide Sacchetto, Michael Geiselmann, Michael Zervas, Scott Papp, John E. Bowers, Kartik Srinivasan
Microcombs - optical frequency combs generated in microresonators - have advanced tremendously in the last decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics

Spontaneous Pulse Formation in Edgeless Photonic Crystal Resonators

April 29, 2021
Author(s)
Su P. Yu, Daniel Cole, Hojoong Jung, Gregory Moille, Kartik Srinivasan, Scott Papp
Complex systems are a proving ground for fundamental interactions between components and their collective emergent phenomena. Through intricate design, integrated photonics offers intriguing nonlinear inter- actions that create new patterns of light. In

Hybrid InP and SiN integration of an octave-spanning frequency comb

February 2, 2021
Author(s)
Travis Briles, Su P. Yu, Lin Chang, Chao Xiang, Joel Guo, David Kinghorn, Gregory Moille, Kartik Srinivasan, John E. Bowers, Scott Papp
Implementing optical-frequency combs with integrated photonics will enable wider use of precision timing signals. Here, we explore the generation of an octave-span, Kerr-microresonator frequency comb, using hybrid integration of an InP distributed-feedback

Automated on-axis direct laser writing of coupling elements for photonic chips

December 21, 2020
Author(s)
Edgar Perez, Gregory Moille, Xiyuan Lu, Daron Westly, Kartik Srinivasan
Direct laser writing (DLW) has recently been used to create versatile micro-optic structures that facilitate photonic-chip coupling, like free-form lenses, free-form mirrors, and photonic wirebonds. However, at the edges of photonic chips, the top-down/off

Improved coupled-mode theory for high-index-contrast photonic platforms

December 4, 2020
Author(s)
Qing Li, Gregory Moille, Hossein Taheri, Ali Adibi, Kartik Srinivasan
Coupled-mode theory has been widely used in optics and photonics design. Despite its popularity, several different formulations of coupled-mode theory exist in the literature and their applicable range is not entirely clear, in particular when it comes to

Efficient photoinduced second-harmonic generation in silicon nitride photonics

November 2, 2020
Author(s)
Xiyuan Lu, Gregory Moille, Ashutosh Rao, Daron Westly, Kartik Srinivasan
Silicon photonics lacks a second-order nonlinear optical (chi(2)) response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits chi(2) nonlinear processes such as second harmonic generation

Dissipative Kerr Solitons in a III-V Microresonator

June 22, 2020
Author(s)
Gregory T. Moille, Lin Chang, Weiqiang Xie, Ashutosh S. Rao, Xiyuan Lu, Marcelo I. Davanco, John E. Bowers, Kartik A. Srinivasan
We demonstrate stable microresonator Kerr solitons in a III-V platform through cryogenic quenching of the thermorefractive effect. Such phase-stable operation is critical to fully exploit the high nonlinearity and low loss available in this platform.

Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics

December 20, 2019
Author(s)
Xiyuan Lu, Gregory Moille, Anshuman Singh, Qing Li, Daron Westly, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The on-chip creation of coherent light at visible wavelengths is of interest to many applications in spectroscopy, sensing, and metrology. Towards that goal, here we propose and demonstrate the first on-chip visible-telecom optical parameteric oscillator