Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search Publications by

Aly Artusio-Glimpse (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 24 of 24

Modern RF Measurements with Hot Atoms

April 4, 2022
Aly Artusio-Glimpse, Matt Simons, Nik Prajapati, Christopher L. Holloway
Over a hundred years later, the classic antenna, first invented by Heinrich Hertz, in 1888, [1], is still the dominant technology used for the measurement of RF fields. Just seven years after its invention, Guglielmo Marconi applied the antenna to long

In situ absorption synchrotron measurements, predictive modeling, microstructural analysis, and scanning probe measurements of laser melted Ti-6Al-4V single tracks for additive manufacturing applications

December 29, 2021
Nicholas Derimow, Edwin Schwalbach, Jake Benzing, Jason Killgore, Aly Artusio-Glimpse, Nik Hrabe, Brian Simonds
In this work, the fundamental processing-structure-property (PSP) relationships that govern laser-based additive manufacturing were investigated with the Ti-6Al-4V alloy. X-ray synchrotron imaging carried out in conjunction with in-situ integrating sphere

The causal relationship between melt pool geometry and energy absorption measured in real time during laser-based manufacturing

December 16, 2021
Brian Simonds, Jack R. Tanner, Aly Artusio-Glimpse, Paul A. Williams, Niranjan Parab, Cang Zhao, Tao Sun
During laser powder bed fusion additive manufacturing, a protean pool of molten metal governs a complex energy absorption process as it presents as either a highly reflective surface, a deeply absorbing cavity (a keyhole), or some amalgamation thereof. To

Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping

November 22, 2021
Christopher L. Holloway, Nik Prajapati, Matt Simons, Samuel Berweger, Aly Artusio-Glimpse, Amy Robinson
We demonstrate the improvement of Rydberg electrometry based on electromagnetically induced transparency (EIT) through the use of a ground state repumping laser. Though there are many factors that limit the sensitivity of radio frequency field measurements

Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning

September 24, 2021
Matt Simons, Aly Artusio-Glimpse, Christopher L. Holloway, Eric Imhof, Steven Jefferts, Robert Wyllie, Brian Sawyer, Thad Walker
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio-frequency (RF) fields. Resonant detection of RF fields by electromagnetically induced transparency and Autler-Townes (AT) splitting in Rydberg

Simultaneous High-speed X-ray Transmission Imaging and Absolute Dynamic Absorptance Measurements during High-power Laser-metal Processing

September 10, 2020
Brian Simonds, Jack R. Tanner, Alexandra B. Artusio-Glimpse, Paul A. Williams, Niranjan Parab, Cang Zhao, Tao Sun
During high-power laser metal processing, the absorbed light is intimately related to the molten metal cavity shape. For the first time, we directly and simultaneously observe this relationship by implementing state-of-the-art techniques of high-speed x

HALO - High Amplification Laser-pressure Optic

June 21, 2020
Alexandra B. Artusio-Glimpse, Kyle A. Rogers, Paul A. Williams, John H. Lehman
Efforts are underway at the National Institute of Standards and Technology to drastically reduce the uncertainty of laser power measurements using radiation pressure. The High Amplification Laser-pressure Optic (HALO) system is a cornerstone of this effort

Radiation-Pressure Enabled Traceable Laser Sources at High CW Powers

January 4, 2019
Paul A. Williams, Alexandra B. Artusio-Glimpse, Joshua A. Hadler, Daniel King, Ivan Ryger, Tam Vo, John H. Lehman, Kyle A. Rogers
Radiation pressure has recently been shown to have practical application for multi-kilowatt CW laser power measurement. One key advantage lies in its ability to measure without absorbing the laser beam. This enables a new measurement paradigm where laser

MEMS non-absorbing electromagnetic power sensor employing the effect of radiation pressure

September 8, 2018
Ivan Ryger, Aly Artusio-Glimpse, Paul A. Williams, Gordon A. Shaw, Matt Simons, Christopher L. Holloway, John H. Lehman
We demonstrate a compact electromagnetic power sensor based on force effects of electromagnetic radiation onto a highly reflective mirror surface. Unlike the conventional power measurement approach, the photons are not absorbed and can be further used in

Mechanical characterization of planar springs for compact radiation pressure power meters

September 7, 2018
Alexandra B. Artusio-Glimpse, Ivan Ryger, Paul A. Williams, Kyle A. Rogers, Daniel W. Rahn, Andrew J. Walowitz, John H. Lehman
Counter to conventional methods of measuring laser optical power, radiation pressure-based power meters operate by reflection rather than absorption. This provides an opportunity for in situ, non-destructive total beam power measurement. Compact radiation

Micromachined force balance for optical power measurement by radiation pressure sensing

August 6, 2018
Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, Kyle A. Rogers, John H. Lehman
We introduce a micromachined force scale for laser power measurement by means of radiation pressure sensing. With this technique, the measured laser light is not absorbed and can be utilized while being measured. We employ silicon micromachining technology

Point-of-Use, Nonexclusive, High-Power Laser Power Meter

June 19, 2018
Aly Artusio-Glimpse, Ivan Ryger, Paul A. Williams, John H. Lehman
We have developed a small-package, high-power laser power meter that directly measures radiation pressure on a high-reflectivity mirror for nonexclusive, in situ laser measurements without pick- off schemes. Furthermore, our non-inertial design inhibits

Measurement of Radio-Frequency Radiation Pressure

February 13, 2018
Christopher L. Holloway, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Ivan Ryger
In this work we perform measurements of the radiation pressure of a radio-frequency (RF) electromagnetic field which will lead to a new SI traceable power calibration. There are several groups around the world investigating methods to perform more direct

Prototype Tests of a Miniature Radiation Pressure Sensor

July 2, 2017
Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Ivan Ryger, Michelle S. Stephens, John H. Lehman
Using reflection, radiation pressure (RP) sensors provide a means for in-situ power measurement simply and accurately. The first realization of multi-kW RP power meters (RPPM) established a new paradigm of optical power measurement technology [1]. Our

Silicon Micromachined Capacitive Force Scale: The Way to Improved Radiation Pressure Sensing

July 2, 2017
Ivan Ryger, Paul A. Williams, Nathan A. Tomlin, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Measurement of high optical power using radiation pressure sensing [1] is attractive for its non-absorbing power measurment allowing compact sensor dimensions, faster response times and negligible optical power dissipation compared to standard thermal

Rydberg Engineering: Recent Techniques for Sensitive Field Measurements

January 1, 2001
Drew Rotunno, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Christopher L. Holloway, Amy Robinson
Highly-excited Rydberg atoms have been used for International System of Unit (SI)-traceable radio-frequency (RF) electric field and power measurements, but are limited in sensitivity to order 100 $\mu$V/m/$\sqrtHz}$ by noise and linewidth issues. These

Development of a miniature radiation pressure-measuring microscale

Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Traditional methods for accurate measurement of high-power lasers involve total absorption of the laser light [1]. Our method, however, measures photon pressure exerted on a mirror without obstruction of the laser beam. The technique enables in situ

Feedback control of a nonlinear electrostatic force transducer

Ivan Ryger, Stefan Chamraz, Richard Balogh, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, John H. Lehman, Paul A. Williams
In this article, we document a design process for a feedback controller for a nonlinear electrostatic transducer that exhibits a strong unloaded resonance. This is being used for precision optical power measurement by means of a photon force measurement