Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jeff Shainline (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 37

Advancing Measurement Science for Microelectronics: CHIPS R&D Metrology Program

February 13, 2024
Author(s)
Marla L. Dowell, Hannah Brown, Gretchen Greene, Paul D. Hale, Brian Hoskins, Sarah Hughes, Bob R. Keller, R Joseph Kline, June W. Lau, Jeff Shainline
The CHIPS and Science Act of 2022 called for NIST to "carry out a microelectronics research program to enable advances and breakthroughs....that will accelerate the underlying R&D for metrology of next-generation microelectronics and ensure the

Demonstration of Superconducting Optoelectronic Single-Photon Synapses

October 6, 2022
Author(s)
Saeed Khan, Bryce Primavera, Jeff Chiles, Adam McCaughan, Sonia Buckley, Alexander Tait, Adriana Lita, John Biesecker, Anna Fox, David Olaya, Richard Mirin, Sae Woo Nam, Jeff Shainline
Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and computational ability. Such hardware combines integrated-photonic components for few-photon, light

PHIDL: Python-based layout and geometry creation for nanolithography

September 27, 2021
Author(s)
Adam McCaughan, Alexander N. Tait, Sonia Buckley, Jeff Chiles, Jeff Shainline, Sae Woo Nam, Dylan M. Oh
Computer-aided design (CAD) has become a critical element in the creation of nanopatterned structures and devices. In particular, with the increased adoption of easy-to-learn programming languages like python, there has been a significant rise in the

Optoelectronic Intelligence

May 7, 2021
Author(s)
Jeff Shainline
To design and construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large neural systems capable of general intelligence, the attributes of photonics for communication and

Characterization of waveguide-integrated single-photon detectors using integratedphotonic structures

February 18, 2021
Author(s)
Sonia M. Buckley, Alexander N. Tait, Jeffrey T. Chiles, Adam N. McCaughan, Saeed Khan, Richard Mirin, Sae Woo Nam, Jeffrey M. Shainline
We show several techniques for using integrated-photonic waveguide structures to simultaneously characterize multiple waveguide-integrated superconducting-nanowire detectors with a single fiber input. We demonstrate structures for direct comparison of

Does Cosmological Evolution Select for Technology?

July 30, 2020
Author(s)
Jeff Shainline
Fine tuning of the parameters defining the physics of our universe has been proposed to result from the natural selection of universes capable of prolific reproduction. This cosmic reproduction may occur through singularities, and it has been argued that

Microresonator enhanced, waveguide coupled emission from silicon defect centers for superconducting optoelectronic networks

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Sae Woo Nam, Richard P. Mirin
Superconducting optoelectronic networks could achieve scales unmatched in hardware-based neuromorphic computing. After summarizing recent progress in this area, we report new results in cryogenic silicon photonic light sources, components central to these

Microring resonator-coupled photoluminescence from silicon W centers

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey T. Chiles, Adam N. McCaughan, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline
Defect centers are promising candidates for waveguide-integrated silicon light sources. We demonstrate microresonator- and waveguide-coupled photoluminescence from silicon W centers. Observations indicate that wavelengths that are on-resonance with

Superconducting microwire detectors with single-photon sensitivity in the near-infrared

June 16, 2020
Author(s)
Jeffrey T. Chiles, Sonia M. Buckley, Adriana E. Lita, Varun B. Verma, Jeffrey M. Shainline, Richard P. Mirin, Sae Woo Nam, Jason Allmaras, Boris Korzh, Emma Wollman, Matthew Shaw
We report on the fabrication and characterization of single-photon-sensitive WSi superconducting detectors with wire widths from 1 υm to 3 υm. The devices achieve saturated internal detection efficiency at 1.55 υm wavelength and exhibit maximum count rates

Optimization of photoluminescence from W centers in silicon-on-insulator for waveguide-coupled sources

May 13, 2020
Author(s)
Sonia M. Buckley, Alexander N. Tait, Galan Moody, Kevin L. Silverman, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline, Stephen Olson, Joshua Hermann, Satyvalu Papa Rao
W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218\textmu m. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diode sources. Here we optimize

Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers

May 1, 2020
Author(s)
Saeed Khan, Jeff Shainline, Richard Mirin, Sae Woo Nam, Sonia Buckley, Jeff Chiles
We demonstrate adiabatically tapered fibers terminating in sub-micron tips that are clad with a higher-index material for coupling to an on-chip waveguide. This cladding enables coupling to a high-index waveguide without losing light to the buried oxide. A

Fluxonic processing of photonic synapse events

January 1, 2020
Author(s)
Jeffrey M. Shainline
Much of the information processing performed by a neuron occurs in the dendritic tree. For neural systems using light for communication, it is advantageous to convert signals to the electronic domain at synaptic terminals so dendritic computation can be

Multi-functional integrated photonics in the mid-infrared with suspended AlGaAs on silicon

September 18, 2019
Author(s)
Jeff Chiles, Nima Nader, Eric J. Stanton, Daniel Herman, Galan Moody, Biswarup Guha, Kartik Srinivasan, Scott Diddams, Ian Coddington, Nathan R. Newbury, Jeff Shainline, Sae Woo Nam, Richard Mirin, Jiangang Zhu, Juliet Gopinath, Connor Fredrick
The microscale integration of mid- and longwave-infrared photonics could enable the development of fieldable and reliable chemical sensors. The choice of material platform immediately determines the strength and types of optical nonlinearities available

Design of superconducting optoelectronic networks for neuromorphic computing

November 6, 2018
Author(s)
Sonia Buckley, Adam McCaughan, Jeff Chiles, Richard Mirin, Sae Woo Nam, Jeff Shainline
We have previously proposed a novel hardware platform for neuromorphic computing based on superconducting optoelectronics that presents many of the features necessary for information processing in the brain. Here we discuss the design and training of

Circuit designs for superconducting optoelectronic loop neurons

October 12, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Richard P. Mirin, Sae Woo Nam, Sonia M. Buckley
We present designs of superconducting optoelectronic neurons based on superconducting single- photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. The neurons send few-photon signals to synaptic

Superconducting optoelectronic networks III: synaptic plasticity

July 5, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Sonia M. Buckley, Christine A. Donnelly, Manuel C. Castellanos Beltran, Michael L. Schneider, Richard P. Mirin, Sae Woo Nam
As a means of dynamically reconfiguring the synaptic weight of a superconducting optoelectronic loop neuron, a superconducting flux storage loop is inductively coupled to the synaptic current bias of the neuron. A standard flux memory cell is used to

Superconducting optoelectronic networks V: networks and scaling

May 17, 2018
Author(s)
Jeffrey M. Shainline, Jeffrey T. Chiles, Sonia M. Buckley, Adam N. McCaughan, Richard P. Mirin, Sae Woo Nam
Networks of superconducting optoelectronic neurons are investigated for their near-term technological potential and long-term physical limitations. Networks with short average path length, high clustering coefficient, and power-law degree distribution are