Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Daniel Slichter (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 17 of 17

Trap-Integrated Superconducting Nanowire Single-Photon Detectors with Improved RF Tolerance for Trapped-Ion Qubit State Readout

April 24, 2023
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Sae Woo Nam, Varun Verma
State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong radio frequency (rf) electric fields used for trapping can impact detector performance. Here, we report on

Measurement of electric-field noise from interchangeable samples with a trapped-ion sensor

November 18, 2021
Kyle McKay, Dustin Hite, Philip D. Kent, Shlomi S. Kotler, Dietrich Leibfried, Daniel Slichter, Andrew C. Wilson, David P. Pappas
We demonstrate the use of a single trapped ion as a sensor to probe electric-field noise from interchangeable test surfaces. As proof of principle, we measure the magnitude and distance dependence of electric-field noise from two ion-trap-like samples with

High-fidelity laser-free universal control of trapped ion qubits

September 8, 2021
Raghavendra Srinivas, Emanuel Knill, Robert Sutherland, Alexander T. Kwiatkowski, Hannah M. Knaack, Scott Glancy, David J. Wineland, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David T. Allcock, Daniel Slichter
Universal control of multiple qubits—the ability to entangle qubits and to perform arbitrary individual qubit operations—is a fundamental resource for quantum computing, simulation and networking. Qubits realized in trapped atomic ions have shown the

Motional Squeezing for Trapped Ion Transport and Separation

August 20, 2021
Robert Sutherland, Shaun Burd, Daniel Slichter, Stephen Libby, Dietrich Leibfried
Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale quantum computing architectures. In this Letter, we develop a theoretical framework that describes the dynamics of ions in time-varying potentials with

Resource-efficient dissipative entanglement of two trapped-ion qubits

August 6, 2021
Daniel Cole, Stephen Erickson, Giorgio Zarantonello, Panyu Hou, Jenny Wu, Karl Horn, Daniel Slichter, Florentin Reiter, Christiane Koch, Dietrich Leibfried
We demonstrate a simplified method for generating an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement generation, while

Quantum amplification of boson-mediated interactions

May 13, 2021
Shaun C. Burd, Raghavendra Srinivas, Hannah M. Knaack, Wenchao Ge, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, John J. Bollinger, David T. Allcock, Daniel Slichter
Strong and precisely controlled interactions between quantum objects are essential for quantum information processing\citeSackett2000,Majer2007}, simulation\citeBritton2012}, and sensing\citeHosten2016a,Cox2016}, and for the formation of exotic quantum

Microwaves in Quantum Computing

January 29, 2021
Joseph C. Bardin, Daniel Slichter, David J. Reilly
The growing field of quantum computing relies on a broad range of microwave technologies, and has spurred development of microwave devices and methods in new operating regimes. Here we review the use of microwave signals and systems in quantum computing

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

April 29, 2020
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Hannah M. Knaack, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, David T. Allcock, Daniel Slichter, S. B. Libby
The dominant error sources for state-of-the-art implementations of laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The gate error from these decoherence mechanisms can be suppressed with additional control fields, or

Quantum amplification of motion of a mechanical oscillator

June 21, 2019
Shaun C. Burd, Raghavendra Srinivas, John J. Bollinger, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, Daniel H. Slichter, David T. Allcock
Detection of the weakest forces in nature and the search for new physics demand increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that

Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient

April 26, 2019
Raghavendra Srinivas, Shaun C. Burd, R. T. Sutherland, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, David T. Allcock, Daniel H. Slichter
We present a new method of spin-motion coupling for trapped ions using microwaves and a magnetic field gradient oscillating close to the ions' motional frequency. We demonstrate and characterize this coupling experimentally using a single ion in a surface

Versatile laser-free trapped-ion entangling gates

March 28, 2019
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David J. Wineland, David T. Allcock, Daniel Slichter, S. B. Libby
We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequency. By

Evidence for multiple mechanisms underlying surface-electric field noise in ion traps

December 27, 2018
J. A. Sedlacek, J. Stuart, Daniel Slichter, C. D. Bruzewicz, R. McConnell, J. M. Sage, J. Chiaverini
Energetic ion bombardment, or ion milling, of ion-trap electrode surfaces has previously been shown to reduce electric-field noise, a limit to quantum-logic gate fidelity, generated by the surface. Here, using motional heating of a single trapped strontium

UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap

April 17, 2017
Daniel H. Slichter, Varun B. Verma, Dietrich G. Leibfried, Richard P. Mirin, Sae Woo Nam, David J. Wineland
We demonstrate superconducting nanowire single photon detectors with 76 +/- 4% system detection efficiency at a wavelength of 315 nm and an operating temperature of 3.2 K, with a background count rate below 1 count per second at saturated detection

VECSEL systems for generation and manipulation of trapped magnesium ions

November 8, 2016
Shaun C. Burd, David T. Allcock, Tomi Leinonen, Jussi-Pekka Penttinen, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Robert Jordens, Micrea Guina, Dietrich G. Leibfried, David J. Wineland
Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wave- lengths and with varying requirements on spectral linewidth, power and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when

Single-frequency 571 nm VECSEL for photoionization of magnesium

June 3, 2016
Shaun C. Burd, Tomi Leinonen, Jussi-Pekka Penttinen, David T. Allcock, Daniel H. Slichter, Raghavendra Srinivas, Andrew C. Wilson, Micrea Guina, Dietrich G. Leibfried
We report the development of an intracavity-frequency-doubled VECSEL emitting at 571 nm for photoionization of magnesium. The laser employs a V-cavity geometry with a gain chip at the end of one cavity arm and a lithium triborate (LBO) crystal for second

Single-Mode Optical Fiber For High-Power, Low-Loss UV Transmission

August 8, 2014
Daniel H. Slichter, Yves Colombe, Andrew C. Wilson, Dietrich G. Leibfried, David J. Wineland
We report large-mode-area solid-core photonic crystal fibers made from fused silica which resist UV solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode