Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Elizabeth Donley (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 86

Frequency shift mitigation in a cold-atom CPT clock

May 8, 2016
Author(s)
Xiaochi Liu, John Kitching, Elizabeth Donley, Eugene N. Ivanov
An upgrade in the laser interrogation system for our cold-atom clock based on coherent population trapping has resulted in a reduced light shift. The new approach makes use of an electro-optic modulator to significantly reduce the phase coherence of the

Extended Source Interferometry in the Compact Regime

April 4, 2016
Author(s)
Bruno M. Pelle, Gregory W. Hoth, Stefan Riedl, John E. Kitching, Elizabeth A. Donley
We present an atom interferometer based on an expanding cloud of laser-cooled atoms sensitive to rotations along two axes and acceleration along one axis in an effective volume of 1 cm3. We observed spatially resolved fringes by imaging the expanding cloud

NIST on a Chip: Realizing SI units with microfabricated alkali vapour cells

October 16, 2015
Author(s)
John E. Kitching, Elizabeth A. Donley, Svenja A. Knappe, Matthew T. Hummon, Argyrios Dellis, Jeffrey A. Sherman, Kartik A. Srinivasan, Vladimir A. Aksyuk, Qiliang Li, Daron A. Westly, Brian J. Roxworthy, Amit Lal
We describe several ways in which microfabricated alkali atom vapour cells might potentially be used to accurately realize a variety of SI units, including the second, the meter, the kelvin, the ampere and the volt, in a compact, low-cost “chip-scale”

Compact atom-interferometer gyroscope based on an expanding ball of atoms

October 12, 2015
Author(s)
Elizabeth A. Donley, John E. Kitching, Stefan Riedl, Gregory W. Hoth, Bruno M. Pelle
We present a compact atom interferometer based on 87Rb atoms that can simultaneously measure rotations and accelerations with a single source of atoms in a 300 cm3 vacuum package.

Light shifts in a pulsed cold-atom coherent-population-trapping clock

April 10, 2015
Author(s)
Eric M. Blanshan, Elizabeth A. Donley, John E. Kitching
Field-grade atomic clocks capable of primary standard performance in compact physics packages would be of significant value in a variety of applications. A cold-atom coherent population trapping clock featuring laser-cooled 87Rb atoms and pulsed Ramsey

Frequency Biases in a Cold-Atom Coherent Population Trapping Clock

May 22, 2014
Author(s)
Elizabeth A. Donley, Eric M. Blanshan, Francois-Xavier R. Esnault, John E. Kitching
A compact cold-atom clock based on coherent population trapping (CPT) has been developed. The clock typically demonstrates a short-term fractional frequency stability of 4x10 -11/√τ limited by frequency noise on the interrogation lasers. The largest two

Optical hyperpolarization and NMR detection of 129 Xe on a microfluidic chip

May 20, 2014
Author(s)
Ricardo Jimenez Martinez, Daniel J. Kennedy, Michael Rosenbluh, Elizabeth A. Donley, Svenja A. Knappe, Scott J. Seltzer, Hattie L. Ring, Vikram S. Bajaj, John E. Kitching
We present a microfluidic chip that enables the production of laser-polarized 129Xe gas and its optical detection. Production of polarized 129Xe and its remote detection is achieved under flowing gas conditions at low magnetic fields in two separate

First Accuracy Evaluation of NIST-F2

May 1, 2014
Author(s)
Thomas P. Heavner, Steven R. Jefferts, Jon H. Shirley, Thomas E. Parker, Elizabeth A. Donley, Neil Ashby, Stephan E. Barlow, Filippo Levi, Giovanni Costanzo
We report the first accuracy evaluation of NIST-F2, a second generation laser-cooled Cesium fountain primary standard developed at NIST with a cryogenic (Liquid Nitrogen) microwave cavity and flight region. The 80 K atom interrogation environment reduces

High-accuracy measurement of the black-body radiation frequency shift of the ground-state hyperfine transition in 133 Cs

February 7, 2014
Author(s)
Steven R. Jefferts, Thomas P. Heavner, Thomas E. Parker, Jon H. Shirley, Elizabeth A. Donley, Neil Ashby
We report a high-accuracy direct measurement of the blackbody radiation shift (BBR) of 133Cs ground state hyperfine transition. This frequency shift is one of the largest systematic frequency biases encountered in realizing the current definition of the SI

A View on Energy Transfer Between Cold Atoms

November 22, 2013
Author(s)
Elizabeth A. Donley
This is an invited perspective article on a paper that will appear in the same issue. The perspective describes imaging energy transfer between cold Rydberg atoms.

Cold-atom double-lambda coherent population trapping clock

October 31, 2013
Author(s)
Elizabeth A. Donley, Francois-Xavier R. Esnault, Eric M. Blanshan, Eugene N. Ivanov, Robert E. Scholten, John E. Kitching
Miniature atomic clocks based on coherent population trapping (CPT) states in thermal atoms are emerging as an important component in many field applications, particularly where satellite frequency standards are not accessible. Cold-atom CPT clocks promise

Cancellation of Doppler Shifts in a Cold-Atom CPT Clock

July 25, 2013
Author(s)
Elizabeth A. Donley, Francois-Xavier R. Esnault, Eric M. Blanshan, John E. Kitching
A compact cold-atom clock based on coherent population trapping (CPT) is being developed. Long-term goals for the clock include achieving a fractional frequency accuracy of 1x10 -13 in a package of less than 10 cm 3 in volume. Here we present an overview

Nuclear magnetic resonance gyroscopes

April 15, 2013
Author(s)
Elizabeth A. Donley, John E. Kitching
This review begins with an introduction to NMR gyroscopes (NMRGs), followed by a discussion of the frequency shifts and relaxation mechanisms that determine and their performance. Specific NMRG implementations are then reviewed, including dual NMR species

Atom numbers in magneto-optic traps with millimeter scale laser beams

February 22, 2013
Author(s)
Gregory W. Hoth, Elizabeth A. Donley, John E. Kitching
We measure the number of atoms, N, that can be trapped in a conventional vapor cell MOT using beams that have a diameter d in the range 1-5 mm. We show that the N \propto d 3.6 scaling law observed for larger MOTs is a robust approximation for optimized

A COLD-ATOM CLOCK BASED ON COHERENT POPULATION TRAPPING

November 26, 2012
Author(s)
Elizabeth A. Donley, Francois-Xavier R. Esnault, Eric M. Blanshan, John E. Kitching
A compact cold-atom clock based on coherent population trapping is being developed. The clock aims to ultimately achieve a timing uncertainty of a few nanoseconds per day. Here we present an initial evaluation of the three main systematic frequency shifts

A Compact Cold-Atom Frequency Standard Based on Coherent Population Trapping

May 24, 2012
Author(s)
Francois-Xavier R. Esnault, John Kitching, Elizabeth Donley
We present the status of our cold-atom clock based on coherent population trapping, including the present clock stability and a preliminary evaluation of the three main systematic frequency shifts: the 1st-order Doppler shift, the Zeeman shift, and the

Atom-number amplification in a magneto-optical trap via stimulated light forces

January 10, 2012
Author(s)
Elizabeth A. Donley, Tara C. Liebisch, Eric M. Blanshan, John E. Kitching
We have decelerated an atomic beam of 87 Rb using a stimulated-emission slowing technique that makes use of a bichromatic standing light wave of high intensity and increased the load rate into a small magneto-optical trap by up to a factor of 20. We

Atomic Sensors - A Review

September 1, 2011
Author(s)
John E. Kitching, Svenja A. Knappe, Elizabeth A. Donley
We discuss the basic physics and instrumentation issues related to high performance physical and inertial sensors based on atomic spectroscopy.

Offset phase locking of noisy diode lasers aided by frequency division

August 31, 2011
Author(s)
Elizabeth A. Donley, Eugene N. Ivanov, Francois-Xavier R. Esnault
For heterodyne phase locking, frequency division of the beat note between two oscillators can improve the reliability of the phase lock and the quality of the phase synchronization. Frequency division can also reduce the size, weight, power, and cost of

Comparing Room Temperature and Cryogenic Cesium Fountains

July 31, 2011
Author(s)
Steven R. Jefferts, Thomas P. Heavner, Thomas E. Parker, Jon H. Shirley, Elizabeth A. Donley, Filippo Levi, Davide Calonico, C Calosso, Giovanni Costanzo, B. Mongino
We have compared the frequency of a room temperature cesium fountain primary frequency standard with that of a cryogenic (~80K) cesium fountain. This comparison yields a measurement of the blackbody frequency shift of the room temperature fountain.

MOT Loading Enhancement with Stimulated Light Forces

July 31, 2011
Author(s)
Elizabeth A. Donley, Tara C. Liebisch, Eric M. Blanshan, John E. Kitching
We demonstrate atom number enhancement in a magneto-optical trap (MOT) by use of bichromatic cooling to slow an atomic beam that is loaded into a MOT. Bichromatic cooling employs stimulated emission to apply strong cooling forces that are not limited by

Status of a compact cold-atom CPT frequency standard

July 31, 2011
Author(s)
Elizabeth A. Donley, Francois-Xavier R. Esnault, John E. Kitching, Eugene N. Ivanov
We describe the main progress towards the realization of a cold atom frequency standard based on coherent population trapping (CPT). We explain our particular CPT configuration and give details on the experimental setup.

Nuclear Magnetic Resonance Gyroscopes

November 2, 2010
Author(s)
Elizabeth A. Donley
Nuclear magnetic resonance gyroscopes(NMRGs)detect rotation as shift in the Larmor precession frequency of nuclear spins. A review of the open literature on NMRGs is presented, which includes an introduction to the spectroscopic techniques that enable

Towards a compact cold atom frequency standard based on coherent populatoin trapping

June 2, 2010
Author(s)
Francois-Xavier R. Esnault, Elizabeth Donley, John Kitching
We describe in this paper the main features of a cold atom CPT based frequency standard. We explain our particular CPT configuration and our experimental setup. as well as present simulations of the expected performance (stability and major systematics)