Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John H. Lehman (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 101 - 125 of 312

Portable high-accuracy non-absorbing laser power measurement at kilowatt levels by means of radiation pressure

February 16, 2016
Author(s)
Paul A. Williams, Joshua A. Hadler, Frank C. Maring, Robert Lee, Kyle A. Rogers, Brian J. Simonds, Matthew T. Spidell, Ari D. Feldman, John H. Lehman
We describe a unique optical power meter which measures the radiation pressure to accurately determine a laser’s optical power output. This approach traces its calibration of the optical Watt to the kilogram. Our power meter is designed for high-accuracy

Morphological and Electrical Characterization of MWCNT Papers and Pellets

December 27, 2015
Author(s)
Elisabeth Mansfield, Ari D. Feldman, Ann C. Chiaramonti Debay, John H. Lehman, Alexandra E. Curtin
Six types of multiwall carbon nanotube soot were obtained and prepared into buckypapers by pellet pressing and by filtration into a paper. These samples were evaluated with respect to thickness, compressibility and electrical conductivity. DC conductivity

Atomic Clock with 1x10 -18 Room-Temperature Blackbody Stark Uncertainty

December 31, 2014
Author(s)
Kyle P. Beloy, Nathan M. Hinkley, Nate B. Phillips, Jeffrey A. Sherman, Marco Schioppo, John H. Lehman, Ari D. Feldman, Leonard M. Hanssen, Christopher W. Oates, Andrew D. Ludlow
The Stark shift due to blackbody radiation (BBR) is a key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we

Progress toward Radiation-Pressure-Based Measurement of High-Power Laser Emission - Under Policy Review

October 6, 2014
Author(s)
Paul A. Williams, Joshua A. Hadler, Daniel King, Robert Lee, Frank C. Maring, Gordon A. Shaw, Nathan A. Tomlin, John H. Lehman, Marla L. Dowell
We present an overview of our efforts toward using optical radiation pressure as a means to measure optical power from high-power lasers. Early results with measurements ranging from tens of watts to 92 kW prove the concept, but validation uncertainties

A CW calibrated laser pulse energy meter for the range 1 pJ to 100mJ

May 13, 2014
Author(s)
Malcolm G. White, Rodney W. Leonhardt, David J. Livigni, John H. Lehman
We describe the use of a silicon photodiode trap detector and digital storage oscilloscope as an absolute laser pulse energy meter, capable of repetition rates of 85 Hz and 5% uncertainty (k = 2). The maximum repetition rate is limited by the decay time of

Use of radiation pressure for measurement of high-power laser emission

October 15, 2013
Author(s)
Paul A. Williams, Joshua A. Hadler, Robert Lee, Frank Maring, John H. Lehman
We demonstrate a paradigm in absolute laser radiometry where a laser beam's power can be measured from its radiation pressure. Using an off-the-shelf high-accuracy mass scale and a 500 W Yb-doped fiber laser and a 92 kW CO2 laser, we show preliminary
Was this page helpful?