Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John J. Bollinger (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 276

A stroboscopic approach to trapped-ion quantum information processing with squeezed phonons

October 24, 2019
Author(s)
Wenchao Ge, Brian C. Sawyer, Joseph W. Britton, Kurt Jacobs, Michael Foss-Feig, John Bollinger
In trapped-ion quantum information processing, interactions between spins (qubits) are mediated by collective modes of motion of an ion crystal. While there are many different experimental strategies to design such interactions, they all face both

Quantum amplification of motion of a mechanical oscillator

June 21, 2019
Author(s)
Shaun C. Burd, Raghavendra Srinivas, John J. Bollinger, Andrew C. Wilson, David J. Wineland, Dietrich G. Leibfried, Daniel H. Slichter, David T. Allcock
Detection of the weakest forces in nature and the search for new physics demand increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that

Modeling near ground-state cooling of two-dimensional ion crystals in a Penning trap using electromagnetically induced transparency

February 7, 2019
Author(s)
Athreya Shankar, Elena Jordan, Kevin Gilmore, Arghavan Safavi-Naini, John J. Bollinger, Murray Holland
Penning traps, with their ability to control planar crystals of tens to hundreds of ions, are versatile quantum simulators. Thermal occupations of the motional drumhead modes, transverse to the plane of the ion crystal, degrade the quality of quantum

Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions

February 7, 2019
Author(s)
Judith Elena Jordan, Kevin A. Gilmore, Athreya Shankar, Arghavan Safari-Naini, Justin G. Bohnet, Murray Holland, John J. Bollinger
We study, both experimentally and theoretically, electromagnetically induced transparency cooling of the axial drumhead modes of 2-dimensional arrays with up to N 190 Be+ ions stored in a Penning trap. Substantial sub-Doppler cooling is observed for all N

Trapped Ion Quantum Information Processing with Squeezed Phonons

January 24, 2019
Author(s)
Wenchao Ge, Brian Sawyer, Joseph W. Britton, Kurt Jacobs, John Bollinger, Michael Foss-Feig
Trapped ions offer a pristine platform for quantum computation and simulation, but improving their coherence remains a crucial challenge. Here, we propose and analyze a new strategy to enhance the coherent interactions in trapped-ion systems via parametric

Verification of a Many-Ion Simulator of the Dicke Model Through Slow Quenches across a Phase Transition

July 27, 2018
Author(s)
Arghavan Safavi-Naini, R. J. Lewis-Swan, Justin G. Bohnet, M. Garttner, Kevin Gilmore, Elena Jordan, J. Cohn, James K. Freericks, Ana Maria Rey, John Bollinger
We use a self-assembled two-dimensional Coulomb crystal of ∼70 ions in the presence of an external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which features a quantum phase transition between a

Bang-bang shortcut to adiabaticity in the Dicke model as realized in a Penning trap experiment

May 29, 2018
Author(s)
J. Cohn, Arghavan Safari-Naini, R. J. Lewis-Swan, Justin G. Bohnet, M. Garttner, Kevin Gilmore, Elena Jordan, Ana Maria Rey, John Bollinger, James K. Freericks
We introduce a bang-bang shortcut to adiabaticity for the Dicke model, which we implement via a two-dimensional array of trapped ions in a Penning trap with a spin-dependent force detuned close to the center-of-mass drumhead mode. Our focus is on employing

Vibration-induced field fluctuations in a superconducting magnet

June 27, 2016
Author(s)
Joseph W. Britton, John J. Bollinger, Justin G. Bohnet, Brian C. Sawyer, Hermann Uys, Michael Biercuk
Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed matter systems, and fundamental atomic particles. In high-precision applications, a common view is that that

Quantum spin dynamics and entanglement generation with hundreds of trapped ions

June 15, 2016
Author(s)
Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L. Wall, A M. Rey, Michael S. Foss-Feig, John J. Bollinger
Quantum simulation of spin models can provide insights into a variety of hard problems, including the competition between entanglement and decoherence in open quantum systems. Trapped ions are an established platform for quantum simulation, but only