Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Jacob Taylor (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 154

Optomechanical reference accelerometer

September 8, 2015
Author(s)
Oliver Gerberding, Felipe Guzman, John T. Melcher, Jon R. Pratt, Jacob Taylor
We present an opto-mechanical accelerometer device with high dynamic range, high bandwidth and readout noise levels exceeding 10 μg/√Hz . The straightforward assembly and small cost of our device make it a prime candidate to perform on-site calibrations

MEMS optomechanical accelerometry standards

July 8, 2015
Author(s)
Felipe Guzman, Yiliang Bao, Jason J. Gorman, John R. Lawall, Jacob M. Taylor, Thomas W. LeBrun
Current acceleration primary standards reach relative uncertainties of the order of 0.001 and consist of complex test facilities, typically operated at National Metrology Institutes. Our research focuses on the development of silicon mechanical oscillator

Optomechanical Motion Sensors

July 8, 2015
Author(s)
Felipe Guzman, Oliver Gerberding, John T. Melcher, Julian Stirling, Jon R. Pratt, Gordon A. Shaw, Jacob M. Taylor
Compact optical cavities can be combined with motion sensors to yield unprecedented resolution and SI-traceability in areas such as acceleration sensing and atomic force microscopy AFM, among others. We have incorporated Fabry-Perot fiber-optic micro

Tunable Spin Qubit Coupling Mediated by a Multi-Electron Quantum Dot

June 4, 2015
Author(s)
Vanita Srinivasa, Haitan Xu, Jacob M. Taylor
We present an approach for entangling electron spin qubits localized on spatially separated impurity atoms or quantum dots via a multi-electron, two-level quantum dot. The effective exchange interaction mediated by the dot can be understood as the simplest

Phonon Assisted Gain in a Semiconductor Quantum Dot Maser

May 13, 2015
Author(s)
Michael Gullans, Yinyiu Liu, George Stehlik, Jason Petta, Jacob M. Taylor
We develop a microscopic model for the recently demonstrated double quantum dot (DQD) maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from transitions

Semiconductor Double Quantum Dot Micromaser

January 16, 2015
Author(s)
Michael Gullans, Yinyiu Liu, George Stehlik, Jacob M. Taylor, Jason Petta
The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few- emitter limit provide opportunities for understanding quantum coherent

Bounds on quantum communication via Newtonian gravity

January 15, 2015
Author(s)
Jacob M. Taylor, Dvir Kafri, G J. Milburn
The classical understanding of gravity yields specific observ- able consequences, the most striking of which is the emergence of a 1/r2 force. In so far as communication can arise via such interactions between distant particles, we can ask what would be

Quantum Nonlinear Optics Near Optomechanical Instabilities

January 9, 2015
Author(s)
Xunnong Xu, Michael Gullans, Jacob Taylor
Optomechanical systems provide a unique platform for observing quantum behavior of macro- scopic objects. However, efforts towards realizing nonlinear behavior at the single photon level have been inhibited by the small size of the radiation pressure

Environment-assisted quantum control of a solid state spin via 2-color coherent dark states

September 7, 2014
Author(s)
Jacob M. Taylor, Jack Hansom, Carsten Schulte, Claire Le Gall, Clemens Matthiesen, Edmund Clarke, Maxime Hugues, Mete Atature
Semiconductor quantum dots (QDs) offer an efficient and scalable interface between single spins and optical photons. However, the solid-state environment of the QD represents an inherent source of noise, generally considered detrimental to coherent control

Topological Robustness of Transport Statistics for Photons in a Synthetic Gauge Field

August 20, 2014
Author(s)
Sunil Mittal, Jingyun Fan, Sanli Faez, Alan L. Migdall, Jacob M. Taylor, Mohammad Hafezi
Electronic transport through a disordered medium leads generically to localization, where conductance drops exponentially with system size, even at zero temperature. The addition of gauge fields to disordered media leads to fundamental changes in transport
Was this page helpful?