Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 105

Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states

May 25, 2021
Author(s)
Mingze Liu, Wenqi Zhu, Pengcheng Huo, Lei Feng, Maowen Song, Cheng Zhang, Lu Chen, Henri Lezec, Yanqing Lu, Amit Agrawal, Ting Xu
Monochromatic light can be characterized by its three fundamental properties: amplitude, phase and polarization. In this work, we propose a versatile, transmission-mode all-dielectric metasurface platform that can independently manipulate the phase and

Broadband generation of perfect Poincare beams via dielectric spin-multiplexed metasurface

April 13, 2021
Author(s)
Mingze Liu, Pengcheng Huo, Wenqi Zhu, Cheng Zhang, Si Zhang, Maowen Song, Song Zhang, Qianwei Zhou, Lu Chen, Henri Lezec, Amit Agrawal, Yanqing Lu, Ting Xu
Poincaré beam, which describes the space-variant polarization of a light beam carrying spin angular momentum (SAM) and orbital angular momentum (OAM), plays an important role in various optical applications. Since the radius of a Poincaré beam depends on

Magneto-optical trapping using planar optics

January 29, 2021
Author(s)
William McGehee, Wenqi Zhu, Daniel Barker, Daron Westly, Alexander Yulaev, Nikolai Klimov, Amit Agrawal, Stephen Eckel, Vladimir Aksyuk, Jabez J. McClelland
Laser-cooled atoms are a key component of many calibration-free measurement platforms— including clocks, gyroscopes, and gravimeters—and are a promising technology for quantum networking and quantum computing. The optics and vacuum hardware required to

Independent Amplitude Control of Arbitrary Orthogonal States of Polarization via Dielectric Metasurfaces

December 23, 2020
Author(s)
Qingbin Fan, Mingze Liu, Cheng Zhang, Wenqi Zhu, Yilin Wang, Peicheng Lin, Feng Yan, Lu Chen, Henri Lezec, Yanqing Lu, Amit Agrawal, Ting Xu
Exquisite polarization control using optical metasurfaces has attracted considerable attention thanks to their ability to manipulate multichannel independent wavefronts with subwavelength resolution. Here we present a new class of metasurface polarization

Endothermic reaction at room temperature enabled by deep-ultraviolet plasmons

November 2, 2020
Author(s)
Canhui Wang, Wei-Chang Yang, David Raciti, Alina Bruma, Ronald Marx, Amit Agrawal, Renu Sharma
Sequestration and conversion of CO2 is a promising method for remedying climate change. However, current technologies remain limited due to infeasible system demands and outputs, such as high-temperature/pressure conditions, use of precious metals, or low

Plasmonic Electronic Raman Scattering as Internal Standard for Spatial and Temporal Calibration in Quantitative Surface-enhanced Raman Spectroscopy

October 28, 2020
Author(s)
Wonil Nam, Yuming Zhao, Junyeob Song, Seied Ali Safiabadi Tali, Seju Kang, Wenqi Zhu, Henri Lezec, Amit Agrawal, Peter J. Vikesland, Wei Zhou
Ultrasensitive surface-enhanced Raman spectroscopy (SERS) still faces difficulties in quantitative analysis because of its susceptibility to local optical field variations at plasmonic hotspots in metallo-dielectric nanostructures. Current SERS calibration

Scalable microresonators for room-temperature detection of electron spin resonance from dilute, sub-nanoliter volume solids

October 28, 2020
Author(s)

Nandita S. Abhyankar, Amit K. Agrawal, Pragya R. Shrestha, Russell A. Maier, Robert D. McMichael, Jason P. Campbell, Veronika A. Szalai

Microresonators used for spin detection in volume-limited samples suffer from poor quality factors, which adversely affect sensitivity and ease of coupling to the microwave source. Here we adapt a metamaterial design with toroidal moment to confine

Photorealistic full-color nanopainting enabled by a low-loss metasurface

September 4, 2020
Author(s)
Pengcheng Huo, Maowen Song, Wenqi Zhu, Cheng Zhang, Lu Chen, Henri Lezec, Yanqing Lu, Amit Agrawal, Ting Xu
We design and experimentally demonstrate a TiO2 metasurface that enables full-color generation and ultrasmooth color brightness variations. The reproduced famous artwork "girl with a pearl earring" features photorealistic color representation and

Plasmon Lasers

August 26, 2020
Author(s)
Wenqi Zhu, Shawn M. Divitt, Matthew S. Davis, Cheng Zhang, Ting Xu, Henri Lezec, Amit Agrawal
Recent advancements in the ability to design, fabricate and characterize optical and optoelectronic devices at the nanometer scale have led to tremendous developments in the miniaturization of optical systems and circuits. Development of wavelength scale

Low-loss Metasurface Optics down to the Deep Ultraviolet

August 9, 2020
Author(s)
Cheng Zhang, Shawn M. Divitt, Qingbin Fan, Wenqi Zhu, Amit Agrawal, Yanqing Lu, Ting Xu, Henri Lezec
Metasurfaces, planar arrays of subwavelength electromagnetic structures that collectively mimic the functionality of much thicker conventional optical elements, have been demonstrated at frequencies ranging from the microwave up to the visible. Here, we