Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Effect of Tin Doping on alpha-Fe2O3 Photoanodes for Water Splitting



Christopher C. Bohn, Amit Agrawal, Erich C. Walter, Mark D. Vaudin, Andrew Herzing, Paul M. Haney, Albert A. Talin, Veronika Szalai


Sputtered-deposited films of α-Fe2O3 of thickness 600 nm were investigated as photoanodes for solar water splitting and found to have photocurrents as high as 0.8 mA/cm2 at 1.23 V vs. the reversible hydrogen electrode (RHE). The incorporation of Sn into the α-Fe2O3 is necessary to achieve the highest photocurrents. The Sn dopant concentration in the α-Fe2O3 varies as a function of distance from the fluorine-doped tin oxide (FTO) interface and was quantified using secondary ion mass spectrometry (SIMS) to give a mole fraction of cations of approximately 0.02 % at the electrolyte interface. Sputter-deposited films, relative to samples produced by hydrothermal synthesis,1,2 permit facile characterization of the role and placement of dopants using techniques that cannot typically be applied to the analysis of nanostructured materials. The relative merits of different techniques for determining dopant density in nanostructured films including energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), electrochemical impedance spectroscopy (EIS) and conductivity measurements are compared and discussed. Based on this multi-faceted data set, we conclude that not all dopants present in the α-Fe2O3 are active. Dopant activation, rather than just increasing surface area or dopant concentration, is critical for improving metal oxide performance in water splitting. A more complete understanding of dopant activation will lead to further improvements in the design and response of nanostructured photoanodes.
Journal of Physical Chemistry C


photoanode, hematite, tin doping, electrochemical impedance spectroscopy, dynamic secondary ion mass spectrometry


Bohn, C. , Agrawal, A. , Walter, E. , Vaudin, M. , Herzing, A. , Haney, P. , Talin, A. and Szalai, V. (2012), Effect of Tin Doping on alpha-Fe2O3 Photoanodes for Water Splitting, Journal of Physical Chemistry C, [online], (Accessed May 27, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created June 27, 2012, Updated October 12, 2021