Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Zachary H. Levine (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 148

Superconducting X-ray Sensors for Tomography of Microelectronics

November 1, 2023
Author(s)
Joseph Fowler, Zachary H. Levine, Paul Szypryt, Daniel Swetz
Tomographic imaging of integrated circuits at scales smaller than 1 micrometer is a challenging x-ray measurement. We describe a research instrument based upon superconducting x-ray microcalorimeters, which help to discriminate among materials in a sample

A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray

August 1, 2023
Author(s)
Paul Szypryt, Nathan J. Nakamura, Dan Becker, Douglas Bennett, Amber L. Dagel, W.Bertrand (Randy) Doriese, Joseph Fowler, Johnathon Gard, J. Zachariah Harris, Gene C. Hilton, Jozsef Imrek, Edward S. Jimenez, Kurt W. Larson, Zachary H. Levine, John Mates, Daniel McArthur, Luis Miaja Avila, Kelsey Morgan, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Dan Schmidt, Kyle R. Thompson, Joel Ullom, Leila R. Vale, Michael Vissers, Christopher Walker, Joel Weber, Abigail Wessels, Jason W. Wheeler, Daniel Swetz
We report on the 1,000-element transition-edge sensor (TES) x-ray spectrometer implementation of the TOMographic Circuit Analysis Tool (TOMCAT). TOMCAT combines a high spatial resolution scanning electron microscope (SEM) with a highly efficient and

Noise-resilient deep tomographic imaging

April 24, 2023
Author(s)
Zhen Guo, Zhiguang Liu, George Barbastathis, Qihang Zhang, Michael Glinsky, Bradley Alpert, Zachary H. Levine
X-ray tomography is a non-destructive imaging technique that reveals the interior of an object from its projections at different angles. Under limited-angle and low-photon sampling, a regularization prior is required to retrieve a high-fidelity

A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Reconstructions

April 14, 2023
Author(s)
Zachary H. Levine, Bradley Alpert, Amber Dagel, Joseph Fowler, Edward Jiminez, Nathan J. Nakamura, Daniel Swetz, Paul Szypryt, Kyle Thompson, Joel Ullom
We show three-dimensional reconstructions of a region of an integrated circuit from a 130 nm copper process. The reconstructions employ x-ray computed tomography, measured with a new and innovative high-magnification x-ray microscope. The instrument uses a

Photon echoes using atomic frequency combs in Pr:YSO -- experiment and semiclassical theory

January 30, 2023
Author(s)
Zachary H. Levine, Aditya N. Sharma, Kumel H. Kagalwala, Martin A. Ritter, Eli J. Weissler, Elizabeth A. Goldschmidt, Alan Migdall
Photon echoes in rare-earth-doped crystals are studied to understand the challenges of making broadband quantum memories using the atomic frequency comb (AFC) protocol in systems with hyperfine structure. The hyperfine structure of Pr3+ poses an obstacle

Physics-assisted Generative Adversarial Network for X-Ray Tomography

June 10, 2022
Author(s)
Zhen Guo, Jungki Song, George Barbastathis, Michael Glinsky, Courtenay Vaughan, Kurt Larson, Bradley Alpert, Zachary H. Levine
X-ray tomography is capable of imaging the interior of objects in three dimensions non-invasively, with applications in biomedical imaging, materials study, electronic inspection, and other fields. The reconstruction process can be an ill-conditioned

Advantage of Machine Learning over Maximum Likelihood in Limited-Angle Low-Photon X-Ray Tomography

January 20, 2022
Author(s)
Zhen Guo, Jungki Song, George Barbastathis, Michael Glinsky, Courtenay Vaughan, Kurt Larson, Bradley Alpert, Zachary H. Levine
Limited-angle X-ray tomography reconstruction is an ill-posed inverse problem in general. Especially when the projection angles are limited and the measurements are taken in a photon-limited condition, reconstructions from classical algorithms such as

Semiclassical Theory of Photon Echoes with Application to Pr:YSO

November 4, 2021
Author(s)
Zachary H. Levine
Coherent states are used to prepare a crystal using the Atomic Frequency Comb protocol for quantum memory. Here, semiclassical theory is developed and compared to experimental photon echoes of a coherent pulse.

Separation of Peas and Carrots in Boiling Water

October 27, 2021
Author(s)
Zachary H. Levine
Frozen peas and carrots are commonly available in grocery stores in the United States. The carrots are cut into cubes roughly 8 mm on a side. They are prepared together in water which is brought to a boil. Sometimes peas and carrots which are initially

Design of a 3000 pixel transition-edge sensor x-ray spectrometer for microcircuit tomography

August 1, 2021
Author(s)
Paul Szypryt, Douglas Bennett, William J. Boone, Amber L. Dagel, G Dalton, William Doriese, Malcolm Durkin, Joseph Fowler, Edward Garboczi, Jonathon D. Gard, Gene Hilton, Jozsef Imrek, E S. Jimenez, Vincent Y. Kotsubo, K Larson, Zachary H. Levine, John Mates, D McArthur, Kelsey Morgan, Nathan J. Nakamura, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Carl Reintsema, Dan Schmidt, Daniel Swetz, K R. Thompson, Joel Ullom, C Walker, Joel C. Weber, Abigail Wessels, J W. Wheeler
Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and

Towards Estimating the Uncertainty Associated with 3D Geometry Reconstructed from Medical Image Data

November 1, 2019
Author(s)
Marc Horner, Karim O. Genc, Stephen M. Luke, Todd M. Pietila, Ross T. Cotton, Benjamin Ache, Kevin C. Townsend, Zachary H. Levine
Patient-specific computational modeling is increasingly being used to assist with the visualization, planning and execution of medical treatments. This trend is placing more reliance on medical imaging to provide an accurate representation of anatomical

Scatter corrections in x-ray computed tomography: a physics-based analysis

May 22, 2019
Author(s)
Zachary H. Levine, Timothy Blattner, Adele Peskin, Adam L. Pintar
Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting

Multi-Energy X-Ray Tomography of an Optical Fiber: The Role of Spatial Averaging

March 14, 2019
Author(s)
Zachary H. Levine, Adele P. Peskin, Edward J. Garboczi, Andrew Holmgren
Using a commercial X-ray tomography instrument, we have obtained reconstructions of a graded-index optical fiber with voxels of edge length 1.05 µm at 12 tube voltages. The fiber manufacturer created a graded index in the central region by varying the

A post-processing-free single-photon random number generator with ultra-low latency.

December 10, 2018
Author(s)
Michael A. Wayne, Joshua C. Bienfang, Zachary H. Levine, Alan L. Migdall
The low-latency requirements of a practical loophole-free Bell test preclude time-consuming post- processing steps that are often used to improve the statistical quality of a physical random number generator (RNG). Here we demonstrate a post-processing

Algorithm for rapid determination of optical scattering parameters

October 18, 2017
Author(s)
Zachary H. Levine, Adam L. Pintar, Richelle H. Streater, Anne-Michelle R. Lieberson, Catherine C. Cooksey, Paul Lemaillet
Preliminary experiments at the NIST Spectral Tri-function Automated Reference Reflectometer (STARR) facility have been conducted with the goal of providing the diffuse optical properties of a solid reference standard with optical properties similar to