Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Joseph A. Dura (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 112

Layering of Magnetic Nanoparticles at Amorphous Magnetic Templates with Perpendicular Anisotropy

August 26, 2020
Author(s)
Apurve Saini, Julie Borchers, Sebastian George, Brian B. Maranville, Kathryn L. Krycka, Joseph Dura, Katharina Theis-Brohl, Max Wolff
We reveal the assembly of monodisperse magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-ofplane anisotropy. From neutron reflectometry experiments we extract density

Enhanced Conductivity via Homopolymer-Rich Pathways in Block Polymer-Blended Electrolytes

December 24, 2019
Author(s)
Melody A. Morris, Seung Hyun Sung, Priyanka M. Ketkar, Joseph Dura, Ryan Nieuwendaal, III Epps
The optimization of ionic conductivity and lithium-ion battery stability can be achieved by independently tuning the ion transport and mechanical robustness of block polymer (BP) electrolytes. However, the ionic conductivity of BP electrolytes is

Nuclear Spin Incoherent Neutron Scattering from Quantum Well Resonators

July 1, 2019
Author(s)
Max Wolff, Anton Devishvili, Joseph Dura, Franz A. Adlmann, Brian Kitchen, Gunnar K. Palsson, Heikki Palonen, Brian B. Maranville, Charles Majkrzak, Boris P. Toperverg
We report the detection and quantification of nuclear spin incoherent scattering from hydrogen occupying interstitial sites in a thin film of vanadium. The neutron wave field is enhanced in a quantum resonator with magnetically switchable iron boundaries

Highly Reversible Zinc Metal Anode for Aqueous Batteries

June 1, 2018
Author(s)
Fei Wang, Oleg Borodin, Tao Gao, Xiulin Fan, Wei Sun, Fudong Han, Antonio Faraone, Joseph Dura, Kang Xu, Chunsheng Wang
Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries, because of its high theoretical capacity (820 mAh/g), low electrochemical potential (-0.762 V vs. SHE), high abundance, low toxicity and intrinsic safety. There has been

Unraveling the Complex Hydration Behavior of Ionomers Under Thin Film Confinement

January 16, 2018
Author(s)
Shudipto K. Dishari, Christopher A. Rumble, Mark Maroncelli, Joseph Dura, Michael A. Hickner
Ionomers in thin films behave differently from bulk membranes and their behavior is not well understood. Here, thin films (25-250 nm) of sulfonated Radel (S-Radel) were investigated to understand thickness and hydration effects on the density and

Perovskite Nickelates as Electric-Field Sensors in Salt Water

January 4, 2018
Author(s)
Zhen Zhang, Derek Schwanz, Badri Narayanan, Michele Kotiuga, Joseph Dura, Mathew Cherukara, Hua Zhou, John W. Freeland, Jiarui Li, Ronny Sutarto, Feizhou He, Chongzhao Wu, Jiaxin Zhu, Yifei Sun, Koushik Ramadoss, Stephen S. Nonnenmann, Nanfang Yu, Riccardo Comin, Karin M. Rabe, Subramanian K.R.S. Sankaranarayanan, Shriram Ramanathan
Although oceans comprise over seventy percent of our planet, they are among the least understood ecosystems. Complex three-dimensional marine environments hold important clues into long term effects of climate change, evolutionary consequences, and animal

Self-assembled Layering of Magnetic Nanoparticles in a Ferrofluid onSilicon Surfaces

January 4, 2018
Author(s)
Katharina Theis-Brohl, Erika C. Vreeland, Andrew Gomez, Dale L. Huber, Apurve Saini, Max Wolff, Brian B. Maranville, Erik Brok, Kathryn L. Krycka, Joseph Dura, Julie Borchers
This article describes the 3D self-assembly of monodisperse colloidal magnetite nanoparticles from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure with applied field. The nanoparticles assemble
Was this page helpful?