Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Enhanced Conductivity via Homopolymer-Rich Pathways in Block Polymer-Blended Electrolytes

Published

Author(s)

Melody A. Morris, Seung Hyun Sung, Priyanka M. Ketkar, Joseph A. Dura, Ryan C. Nieuwendaal, III Epps

Abstract

The optimization of ionic conductivity and lithium-ion battery stability can be achieved by independently tuning the ion transport and mechanical robustness of block polymer (BP) electrolytes. However, the ionic conductivity of BP electrolytes is inherently limited by the covalent attachment of the ionically-conductive block to the mechanically-robust block, among other factors. Herein, the BP electrolyte polystyrene-block-poly(oligo-oxyethylene methacrylate) [PS-b-POEM] was blended with POEM homopolymers of varying molecular weights. The incorporation of a higher molecular weight homopolymer additive (α > 1 state) promoted a ?dry brush-like? homopolymer distribution within the BP self-assembly and led to higher lithium salt concentrations in the more mobile homopolymer- rich region, increasing overall ionic conductivity relative to the ?wet brush-like? (α < 1 state) and unblended composites, where α is the molecular weight ratio between the POEM homopolymer and the POEM block in the copolymer. Neutron and X-ray reflectometry (NR and XRR, respectively) provided additional details on the lithium salt and polymer distributions. From XRR, the α> 1 blends showed increased interfacial widths in comparison to their BP (unblended) or α < 1 counterparts because of the more central distribution of the homopolymer. This result, paired with NR data that suggested even salt concentrations across the POEM domains, implied that there was a higher salt concentration in the homopolymer POEM-rich regions in the dry brush blend than in the wet brush blend. Furthermore, using 7Li solid-state nuclear magnetic resonance spectroscopy, we found a temperature corresponding to a transition in lithium mobility (TLi mobility) that was a function of blend-type. TLi mobility was found to be 39 °C above Tg in all cases. Interestingly, the ionic conductivity of the blended BPs was highest in the α > 1 composites even though these composites had higher Tgs than the α < 1 composites, demonstrating that homopolymer-rich conducting pathways formed in the α > 1 assemblies had a larger influence on conductivity than the greater lithium ion mobility in the α < 1 blends.
Citation
Macromolecules
Volume
52
Issue
24

Keywords

Neutron Reflectometry, block polymer, polymer electrolyte
Created December 24, 2019, Updated April 20, 2020