Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Mark D. Stiles (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 326 - 350 of 383

Local-density-functional calculations of the Energy of Atoms

January 1, 1997
Author(s)
Svetlana A. Kotochigova, Zachary H. Levine, Eric L. Shirley, Mark D. Stiles, Charles W. Clark
The total energies of atoms and with atomic number Ζ from 1 to 92 and singly-charge cations with Ζ from 2 to 92 have been calculated to an accuracy of 1 υHartree within four variants of the Kohn-Sham local-density approximation. The approximations

Growth of Giant Magnetoresistance Spin Valves Using Pb and Au as Surfactants

January 1, 1996
Author(s)
William F. Egelhoff Jr., P J. Chen, Cedric J. Powell, Mark D. Stiles, Robert McMichael, C Lin, J Sivertsen, J Judy, K Takano, A Berkowitz
We have investigated the use of Pb and Au as surfactants in an attempt to achieve smoother and sharper interfaces in three types of giant magnetoresistance (GMR) spin valve multilayers: symmetric spin valves, bottom spin valves, and top spin valves. The

Growth of GMR Spin Valves using Indium as a Surfactant

January 1, 1996
Author(s)
William F. Egelhoff Jr., P J. Chen, Cedric J. Powell, Mark D. Stiles, Robert McMichael
We have investigated the use of In as a surfactant to achieve smoother interfaces in spin-valve multilayers of the general type: FeMn/Ni 80Fe 20/Co/Cu/Co/Ni 80Fe 20/glass. The coupling field is reduced from 0.8 to 0.3 mT, presumably by suppressing

Low-temperature Growth of GMR Spin Valves

January 1, 1996
Author(s)
William F. Egelhoff Jr., R Misra, T Ha, Y Kadmon, Cedric J. Powell, Mark D. Stiles, Robert McMichael, Lawrence H. Bennett, C Lin, J Sivertsen, J Judy
We have investigated the dependence of the giant magnetoresistance (GMR) effect, the coercivity, the coupling field, and the resistivity on film deposition at low-substrate temperatures (150 K) in spin valve multilayers of the general type: FeMn/Ni 80Fe 20

Magnetization Reversal in Ultrathin Films with Monolayer-Scale Surface Roughness

January 1, 1996
Author(s)
A Moschel, A Zangwill, R Hyman, Mark D. Stiles
The intrinsic anisotropy of nominally flat, ultrathin ferromagnetic films typically is augmented by a uniaxial anisotropy at step edges. We report model calculations of hysteresis for such systems with in-plane magnetization and monolayer scale roughness

Optimizing the GMR of Symmetric and Bottom Spin Valves

January 1, 1996
Author(s)
William F. Egelhoff Jr., P J. Chen, Cedric J. Powell, Mark D. Stiles, Robert McMichael, C Lin, J Sivertsen, J Judy, K Takano, A Berkowitz, T Anthony, J Brug
We have attempted to optimize the values of the giant magnetoresistance in symmetric spin valves of the type NiO/Co/Cu/Co/Cu/Co/NiO (achieving 23.4%) and in bottom spin valves of the type Co/Cu/Co/NiO (achieving 17.0%), the largest values ever reported for

Oscillatory Exchange Coupling in Fe/Cr Multilayers

January 1, 1996
Author(s)
Mark D. Stiles
First-principles calculations of the reflection probabilities for Fermi surface electrons at Cr/Fe interfaces are used to compute the strength of the oscillatory exchange coupling in Cr/Fe multilayers. These calculations show that critical spanning vectors

The Trade-off Between Large GMR and Small Coercivity in Symmetric Spin Valves

January 1, 1996
Author(s)
William F. Egelhoff Jr., P J. Chen, Cedric J. Powell, Mark D. Stiles, Robert McMichael, C Lin, J Sivertsen, J Judy, K Takano, A Berkowitz
We have investigated the use of various alloys as substitutes for pure Co in the center film of symmetric spin valves of the type NiO/Co/Cu/Co/Cu/Co/NiO. The aim of this work is to identify magnetic materials that exhibit smaller coercivities than pure Co