Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: William D. Phillips (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 333

Quantized Rotation of Atoms From Photons With Orbital Angular Momentum

October 16, 2008
Author(s)
Mikkel Andersen, Changhyun Ryu, Pierre Clade, Vasant Natarajan, A Vaziri, Kristian Helmerson, William D. Phillips
Light can carry two kinds of angular momentum: Spin angular momentum (SAM) associated with its polarization and orbital angular momentum (OAM) associated with its spatial mode [1, 2]. The coupling of optical SAM to atoms has been known for over a century

Transport of Atoms in a Quantum Conveyor Belt

October 16, 2008
Author(s)
A Browaeys, H H ffnert, C R. McKenzie, S L. Rolston, Kristian Helmerson, William D. Phillips
We have performed experiments using a 3D-Bose-Einstein condensate of sodium atoms in a 1D optical lattice to explore some unusual properties of band-structure. In particular, we investigate the loading of a condensate into a moving lattice and find non

Atoms in a Radio-Frequency-Dressed Optical Lattice

April 18, 2008
Author(s)
Ian B. Spielman, James V. Porto, William D. Phillips, Ben Brown, Patricia Lee, Nathan Lundblad
We load cold atoms into an optical lattice dramatically reshaped by radio-frequency coupling of statedependent lattice potentials. This radio-frequency dressing changes the unit cell of the lattice at a subwavelength scale, such that its curvature and

Controlled Exchange Interaction Between Pairs of Neutral Atoms in an Optical Lattice

July 26, 2007
Author(s)
M Anderlini, Patricia J. Lee, Ben L. Brown, Jennifer Sebby-Strabley, William D. Phillips, James V. Porto
Ultra-cold atoms trapped by light, with their inherent quantum coherence and controllability, provide an attractive system for quantum information and for the simulation of complex problems in condensed matter physics. Quantum information processing

Subwavelength Addressibility and Spin-Dependent Transport in a Double-Well Optical Lattice

July 11, 2007
Author(s)
Patricia J. Lee, M Anderlini, Ben L. Brown, Jennifer Sebby-Strabley, William D. Phillips, James V. Porto
We report the experimental demonstration of site-selective RF addressing of atoms with sub-wavelength resolution in a spin-dependent optical lattice of double wells. We also show spin-dependent transport: coherent spatial separation of atomic wave packets

Preparing and Probing Atomic Number States With an Atom Interferometer

May 17, 2007
Author(s)
Jennifer Sebby-Strabley, Ben L. Brown, M Anderlini, Patricia J. Lee, William D. Phillips, James V. Porto, Philip R. Johnson
We describe the controlled loading and measurement of number-squeezed states and Poisson states in individual sites of a double well optical lattice. These states are input to an atom interferometer that is realized by symmetrically splitting individual

The Mott Insulator Transition in a Two Dimensional Atomic Bose Gas

February 22, 2007
Author(s)
Ian B. Spielman, William D. Phillips, James V. Porto
Cold atoms confined in periodic potentials are remarkably versatile quantum systems for implementing simple models prevalent in condensed matter theory. Here we realize the 2D Bose-Hubbard model by loading a Bose-Einstein condensate into an optical lattice